• Gol, Rajab Ali Kamyabi ;
  • Tousi, Reihaneh Raisi
  • Received : 2009.05.18
  • Accepted : 2009.10.08
  • Published : 2011.09.01


We introduce ${\varphi}$-frames in $L^2$(G), as a generalization of a-frames defined in [8], where G is a locally compact Abelian group and ${\varphi}$ is a topological automorphism on G. We give a characterization of ${\varphi}$-frames with regard to usual frames in $L^2$(G) and show that ${\varphi}$-frames share several useful properties with frames. We define the associated ${\varphi}$-analysis and ${\varphi}$-preframe operators, with which we obtain criteria for a sequence to be a ${\varphi}$-frame or a ${\varphi}$-Bessel sequence. We also define ${\varphi}$-Riesz bases in $L^2$(G) and establish equivalent conditions for a sequence in $L^2$(G) to be a ${\varphi}$-Riesz basis.


${\varphi}$-bracket product;${\varphi}$-factorable operator;${\varphi}$-frame;${\varphi}$-Riesz basis;locally compact Abelian group


  1. A. Aldroubi, Q. Sun, and W. Tang, p-frames and shift invariant subspaces of $L^p$, J. Fourier Anal. Appl. 7 (2001), no. 1, 1-21.
  2. C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(R^d)$, J. Funct. Anal. 119 (1994), no. 1, 37-78.
  3. P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129-201.
  4. P. G. Casazza, Modern tools for Weyl-Heisenberg (Gabor) frame theory, Adv. in Image. and Electron. Physics 115 (2001), 1-127.
  5. P. G. Casazza and O. Christensen, Weyl-Heisenberg frames for subspaces of $L^2(R)$, Proc. Amer. Math. Soc. 129 (2001), no. 1, 145-154.
  6. P. G. Casazza, D. Han, and D. Larson, Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), 149-182, Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999.
  7. P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, frames and operator theory, 87-113, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004.
  8. P. G. Casazza and M. C. Lammers, Bracket products for Weyl-Heisenberg frames, Advances in Gabor analysis, 71-98, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 2003.
  9. O. Christensen, An introduction to Frames and Riesz Bases, Birkhauser, 2003.
  10. R. Duffin and A. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
  11. H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Birkhauser, 1998.
  12. G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
  13. G. B. Folland, Real Analysis, John Viley New York, 1984.
  14. M. Frank and D, Larson, Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator Theory 48 (2002), no. 2, 273-314.
  15. E. Hernandez and G. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.
  16. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Springer-Verlag, 1963.
  17. G. Honnouvo and S. Twareque Ali, Gabor-type frames from generalized Weyl-Heisenberg groups, preprint.
  18. R. A. Kamyabi Gol and R. Raisi Tousi, A range function approach to shift-invariant spaces on locally compact Abelian groups, Int. J. Wavelets. Multiresolut. Inf. Process, to appear.
  19. R. A. Kamyabi Gol and R. Raisi Tousi, Bracket products on locally compact Abelian groups, J. Sci. Islam. Repub. Iran 19 (2008), no. 2, 153-157.
  20. R. A. Kamyabi Gol and R. Raisi Tousi, ${\varphi}$-Factorable operators and Weyl-Heisenberg frames on LCA groups, preprint.
  21. R. A. Kamyabi Gol and R. Raisi Tousi, The structure of shift invariant spaces on a locally compact Abelian group, J. Math. Anal. Appl. 340 (2008), no. 1, 219-225.
  22. E. Kaniuth and G. Kutyniok, Zeros of the Zak transform on locally compact Abelian groups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3561-3569.
  23. G. Kutyniok, Time Frequency Analysis on Locally Compact Groups, Ph. D. thesis, Padeborn University, 2000.
  24. G. Kutyniok and D. Labate, The theory of reproducing systems on locally compact Abelian groups, Colloq. Math. 106 (2006), no. 2, 197-220.
  25. A. Ron, and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_2(R^d)$, Canad. J. Math. 47 (1995), no. 5, 1051-1094.
  26. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452.
  27. R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New york, 1980.