# INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

• Kwak, Sung-Kon (Department of Mathematics, Daegu University) ;
• Kang, Joo-Ho (Department of Mathematics, Daegu University)
• Accepted : 2011.03.11
• Published : 2011.03.25
• 87 22

#### Abstract

Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.

#### Keywords

Invertible Interpolation;CSL-Algebra;Tridiagonal Al-gebra;Alg$\cal{L}$

#### References

1. Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl., 2(Birkhauser, Basel), 105-120. https://doi.org/10.1007/978-3-0348-5456-6_9
2. Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J., 29(1980), 121-126. https://doi.org/10.1512/iumj.1980.29.29009
3. Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math., 4, 33(1989), 657-672.
4. Jo, Y. S., Isometris of Tridiagonal algebras, Pacific J. Math., 140(1989), 97-115. https://doi.org/10.2140/pjm.1989.140.97
5. Jo, Y. S. and Choi, T. Y., Isomorphisms of $AlgL_n$ and $AlgL_\infty$, Michigan Math. J., 37(1990), 305-314. https://doi.org/10.1307/mmj/1029004137
6. Jo, Y. S. , Kang, J. H. and Dong Wan Park, Equations AX = Y and Ax = y in AlgL, J. Korean Math. Soc., 43(2006), 399-411. https://doi.org/10.4134/JKMS.2006.43.2.399
7. Katsoulis, E., Moore, R. L., Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory, 29(1993), 115-123
8. Kadison, R., Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A., (1957), 273-276
9. Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc., 3, 19(1969), 45-68 https://doi.org/10.1112/plms/s3-19.1.45
10. Munch, N., Compact causal data interpolation, J. Math. Anal. Appl., 140(1989), 407-418 https://doi.org/10.1016/0022-247X(89)90074-7