Optimization of Air-plasma and Oxygen-plasma Process for Water Treatment Using Central Composite Design and Response Surface Methodology

중심합성설계와 반응표면분석법을 이용한 수처리용 산소-플라즈마와 공기-플라즈마 공정의 최적화

  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 기초교육원)
  • Received : 2011.04.25
  • Accepted : 2011.06.15
  • Published : 2011.07.31


This study investigated the application of experimental design methodology to optimization of conditions of air-plasma and oxygen-plasma oxidation of N, N-Dimethyl-4-nitrosoaniline (RNO). The reactions of RNO degradation were described as a function of the parameters of voltage ($X_1$), gas flow rate ($X_2$) and initial RNO concentration ($X_3$) and modeled by the use of the central composite design. In pre-test, RNO degradation of the oxygen-plasma was higher than that of the air-plasma though low voltage and gas flow rate. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and test variables in a coded unit: RNO removal efficiency (%) = $86.06\;+\;5.00X_1\;+\;14.19X_2\;-\;8.08X_3\;+\;3.63X_1X_2\;-\;7.66X_2^2$ (air-plasma); RNO removal efficiency (%) = $88.06\;+\;4.18X_1\;+\;2.25X_2\;-\;4.91X_3\;+\;2.35X_1X_3\;+\;2.66X_1^2\;+\;1.72X_3^2$ (oxygen-plasma). In analysis of the main effect, air flow rate and initial RNO concentration were most important factor on RNO degradation in air-plasma and oxygen-plasma, respectively. Optimized conditions under specified range were obtained for the highest desirability at voltage 152.37 V, 135.49 V voltage and 5.79 L/min, 2.82 L/min gas flow rate and 25.65 mg/L, 34.94 mg/L initial RNO concentration for air-plasma and oxygen-plasma, respectively.


Dielectric Barrier Discharge;Water Plasma;Central Composite Design;Design parameter;Response surface methodology;Analysis of variance (ANOVA)


  1. 김동석, 박영식, 2010, Boron-doped Diamond 전극을 이용한 Rhodamine B와 N,N-Dimethyl-4-nitrosoanilin의 전기화학적 분해에 반응표면분석법의 적용과 공정 최적화, 한국환경보건학회지, 36(4), 313-322.
  2. 박영식, 2007, 광-펜톤 산화반응을 이용한 Rhodamine B의 탈색, 한국물환경학회지, 23(2), 274-280.
  3. 박영식, 김동석, 2010, BDD 전극을 이용한 OH라디칼 생성과 염료 분해에 미치는 운전인자의 영향, 한국환경과학회지, 19(9), 1143-1152.
  4. 박영식, 우형택, 김동석, 2003, 분말 $TiO_2$와 고정화 $TiO_2$를 이용한 Rhodamine B의 색 제거비교, 대한환경공학회지, 25(12), 1538-1543.
  5. 이승훈, 2008, Minitab을 이용한 공학통계 자료분석, 이레테크, 219-222.
  6. 임용빈, 박성현, 안병진, 김영일, 2008, 실용적인 실험계획법, 자유아카데미, 1-15.
  7. 조일형, 박재홍, 김영규, 이홍근, 2003, 반응표면분석법을 이용한 염색폐수의 광촉매 산화 처리조건의 최적화, 한국물환경학회지, 19(3), 257-270.
  8. 최재욱, 나병기, 2001, 저온 플라즈마 응용 기술, NICE, 19(5), 596-603.
  9. Arslan-Alaton, I., Tureli, G., Olmez-Hanci, T., 2009, Treatment of azo dye production wastewater using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology, J. of Photochem. and Photobio. A: Chem., 202, 142-153.
  10. Cho, I. H., Park, J. H., Kim, Y. G., Lee, H. K., 2003, Optimization of photocatalytic degradation conditions for dyeing wastewater using response surface method, J. of Kor. Soc. on Wat. Qual., 19(3), 257-270.
  11. Cho, I. H., Chang, S. W., Lee, S. J., 2008, Optimization and development of prediction model on the removal condition of livestock wastewater using a response surface method in the photo-Fenton oxidation process, J. of Kor. Soc. of Environ. Eng., 30(6), 642-652.
  12. Design-Expert$^{\circledR}$ Software, 2007, Version 7.1 User's guide, 1-30.
  13. Ha, D. Y., Cho, S. H., 2003, Comparison of $UV/H_2O_2$ and $TiO_2$ photocatalytic oxidation in the dyeing wastewater treatment efficiency, J. of Kor. Soc. of Environ. Eng., 25(9), 1123-1131.
  14. Hao, X., Zhou, M., Xin, Q., Lei, L., 2007, Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water, Chemosphere, 66, 2185-2192.
  15. Korbahti, B. K., 2007, Response surface optimization of electrochemical treatment of textile dye wastewater, J. of Hazard. Mater., 145, 277-286.
  16. Li, M., Feng, C., Hu, W., Zhang, Z., Sugiura, N., 2009, Electrochemical degradation of phenol using electrodes of $Ti/RuO_2-Pt$ and $Ti/IrO_2-Pt$, J. of Hazard. Mater., 162, 455-462.
  17. Muthukumar, M., Sargunamani, D., Selvakumar, N., Rao, J. Venkata, 2004, Optimization of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment, Dyes and Pig., 63, 127-134.
  18. Park, D. K., 2008, Design of experiment using Minitab, Seoul, Gijeon, 1-20.
  19. Robinson, J. A., Bergousnou, M. A., Cairns, W. L., Castle, G. S. P., Inculet, I. I., 2000, Breakdown of air over a water surface stressed by a perpendicular alternating electric field in the presence of a dielectric barrier, IEEE Trans. Appl., 36, 68-75.
  20. Shi, J., Bian, W., Yin, X., 2009, Organic contaminants removal by the technique of pulsed high-voltage discharge in water, J. of Hazard. Mater., 171, 924-931.
  21. Uhm, H. S., 2006, Atmospheric plasma and its applications, J. of the Kor. Vacu. Soc., 15(2), 117-138.
  22. Villanueva-Rodriguez, M., Hernandez-Ramirez, A., Peralta-Hernandez, J. M., Bandala, E. R., Quiroz-Alfaro, M. A., 2009, Enhancing the electrochemical oxidation of acid-yellow 26 azo dye using boron- doped diamond electrodes by addition of ferrous ion, J. of Hazard. Mater., 167(1-3), 1226-1230.
  23. Zhang, Y., Zheng, J., Qu, X., Chen, H., 2008, Design of a novel non-equilibrium plasma-based water treatment reactor, Chemosphere, 70, 1518-1524.
  24. Zhang, Y., Zhou, M., Hao, X., Lei, L., 2007, Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system, Chemosphere, 67, 702-711.

Cited by

  1. Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments vol.23, pp.3, 2014,
  2. A Study on the Inactivation of Phytophthora Blight Pathogen (Phytophthora capsici) using Plasma Process vol.23, pp.9, 2014,
  3. Optimization of ultrasonification of slaughter blood for protein solubilization vol.20, pp.2, 2015,