DOI QR코드

DOI QR Code

Variation of Groundwater Level and Recharge Volume in Jeju Island

제주도 지하수위의 변화와 지하수 함양부피

  • Park, Won-Bea (Jeju Development Institute) ;
  • Kim, Gee-Pyo (Jeju-Special Self-Governing Province Water Resource Headquarter) ;
  • Lee, Joon-Ho (Department of Earth and Marine Science, Jeju National University) ;
  • Moon, Duk-Chul (Jeju-Special Self-Governing Province Water Resource Headquarter) ;
  • Kim, Soo-Jeong (Jeju-Special Self-Governing Province Research Institute of Public Health and Environment) ;
  • Koh, Gi-Won (Jeju Leading Industry Development for Economic Region) ;
  • Pang, Sung-Jun (Department of Earth and Marine Science, Jeju National University) ;
  • Pang, Ig-Chan (Department of Earth and Marine Science, Jeju National University)
  • 박원배 (제주발전연구원) ;
  • 김기표 (제주도특별자치도수자원본부) ;
  • 이준호 (제주대학교 지구해양과학과) ;
  • 문덕철 (제주도특별자치도수자원본부) ;
  • 김수정 (제주특별자치도보건환경연구원) ;
  • 고기원 (제주하이테크산업진흥원) ;
  • 방성준 (제주대학교 지구해양과학과) ;
  • 방익찬 (제주대학교 지구해양과학과)
  • Received : 2011.01.31
  • Accepted : 2011.05.02
  • Published : 2011.07.31

Abstract

The variation of groundwater level in Jeju Island is analyzed with the data of precipitation observed from 48 monitoring post and groundwater level observed from 84 monitoring wells during 2001 to 2009. The groundwater level rises in summer and falls in winter. The rise of groundwater level by precipitation is fast and small in the eastern region and slow and large in the western region. However, the speed of fall during the period of no rain is slower in the eastern region than in the western region. It tells that permeability is greater in the eastern region than in the western region. In this paper, we set up the base level of groundwater and calculate recharge volume between the base level and groundwater surface. During the period, the average recharge volume was $9.83{\times}10^9m^3$ and the maximum recharge volume was $2.667{\times}10^{10}m^3$ after the typhoon Nari. With these volume and the recharge masses obtained by applying the recharge ratio of 46.1%, estimated by Jeju Province (2003), the porous ratio over the whole Jeju Island is 16.8% in average and 4.6% in the case of maximum recharge volume just after typhoon Nari. A large difference in the two ratios is because that it takes time for groundwater permeated through the ground just after rain fall to fill up the empty porous part. Although the porous ratios over the whole Jeju Island obtained in this way has a large error, they give us the advantage to roughly estimate the amount of recharged groundwater mass directly from observing the groundwater level.

Acknowledgement

Supported by : 한국연구재단

References

  1. 김규범, 이명재, 김정우, 이진용, 이강근, 2004, 수위강하곡선을 이용한 함양량 추정기법의 국가 지하수 관측소 지하수위 자료에의 적용성 평가, The Journal of Engineering Geology, 14(3), 313-323.
  2. 김경호, 윤영호, 조재희, 박재성, 1998, 건설기술연구소 논문집, 17(2), 175-182.
  3. 김태원, 함세영, 정재열, 류상민, 이정환, 손건태, 김남훈, 2008, 금정산지역의 수위변동 자료를 이용한 시계열 및 지하수 함양량 분석, 한국환경과학회지, 17(2), 257-267. https://doi.org/10.5322/JES.2008.17.2.257
  4. 문상기, 우남칠, 2001, 누적 강수량과 지하수위 곡선을 이용한 지하수 함양률 추정기법, 지하수토양환경, 6(1), 33-43.
  5. 문상기, 우남칠, 이광식, 2002, 지하수위 유형과유역별 지하수 함양률의 관련성연구: 국가 지하수 관측망 자료의 분석, 지하수토양환경, 7(3), 45-59.
  6. 박재성, 김경호, 전민우, 김지수, 1999, 소유역의 지하수 함양율 추정기법, 지하수환경, 6(2), 76-86.
  7. 박창희, 2002, 국가 지하수 관측망의 수위 및 온도 자료를 이용한 함양량 산정, 석사학위논문, 공주대학교.
  8. 수자원장기종합계획(2006-2020), 2006, 건설교통부.
  9. 이봉주, 구민호, 박윤석, 고기원, 박기화, 2006, 제주 동부지역의 수리확산계수와 지하수 도관 유동 가능성, 지질학회지, 42(3), 439-454.
  10. 이상덕, 2007, 광릉 소유역 내 원두부 지역의 지하수 함양량 산정과 지하수위 변동 분석, 석사학위논문, 연세대학교.
  11. 제주도, 한국수자원공사, 2003. 제주도 수문지질 및 지하수자원 종합조사(3차).
  12. 제주특별자치도, 2010, 기후변화 영향평가 및 적응모델 개발.
  13. 최병수, 안중기, 1998, 지역단위 지하수 자연 함양율 산정방법 연구, 지하수환경, 5(2), 57-65.
  14. 한정상, 한규상, 김창길, 김남종, 한 찬, 1994. 제주도 지하수자원의 최적 개발가능량, 대한지하수환경학회지, 1(1), 33-50.
  15. Healy, R. W., Cook, P. G., 2002, Using groundwater levels to estimate recharge, Hydrogeology Journal, 10, 91-109. https://doi.org/10.1007/s10040-001-0178-0
  16. Moon, S. K., Woo, N. C., Lee, K. S., 2004, Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge, Journal of Hydrology, 292(1-4), 198-209. https://doi.org/10.1016/j.jhydrol.2003.12.030
  17. Scanlon, B. R., Healy, R. W., Cook, P. G., 2002, Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeology Journal, 10, 18-39. https://doi.org/10.1007/s10040-001-0176-2
  18. Solomon, D. K., Sudicky, E. A., 1991, Tritium and helium-3 isotopic ratios for direct estimation of spatial variations in groundwater recharge, Water Resources Research, 27, 2309-2319. https://doi.org/10.1029/91WR01446

Cited by

  1. Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island vol.17, pp.4, 2012, https://doi.org/10.7850/jkso.2012.17.4.252
  2. Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island vol.45, pp.6, 2012, https://doi.org/10.5657/KFAS.2012.0704
  3. Impacts of Fresh and Saline Groundwater Development in Sungsan Watershed, Jeju Island vol.46, pp.7, 2013, https://doi.org/10.3741/JKWRA.2013.46.7.783