Changes on Quality of Acanthopanacis cortex and Aralia elata Shoots by Blanching Conditions and Thawing Methods

Soo-Jin Lee¹, Ja-Min Kim¹, O-Jun Kwon², Yong-Jin Jeong³, Sang-Chul Woo⁴, and Kyung-Young Yoon¹
¹Department of Food Science and Nutrition, Yeungnam University, Gyeongsan 712-749, Korea
²Gyeongbuk Regional Innovation Agency, Gyeongsan 712-710, Korea
³Department of Food Science and Technology, Keimyung University, Daegu 704-701, Korea
⁴Department of Fire Safety Management, Daegu Health College, Daegu 702-722, Korea

오가피와 두릅 순의 blanching 조건 및 해동방법에 따른 품질 변화

이수진¹, 김지민¹, 권오준², 정용진³, 우상철⁴, 윤경영⁵
¹영남대학교 식품영양학과, ²경북전략산업기획단, ³계명대학교 식품가공학과, ⁴대구보건대 소방안전관리과

Abstract

This study was performed to analyze the physicochemical and sensory properties of Acanthopanacis cortex and Aralia elata according to their blanching conditions and thawing methods. In terms of their Hunter colors, the A. cortex and A. elata that were blanched without adding salt to them for 7 min and 4 min, respectively, had the highest L values. The chlorophyll content (148.7 mg%) of A. cortex that was blanched with 1% salt for 4 min was higher than those of the other samples, and the chlorophyll content of A. elata was 32.4 mg% when it was blanched for 4 min without salt addition. The sensory test results showed the highest overall preference for the sample that was blanched without salt for 4 min among all the samples. The Hunter color of A. cortex did not significantly differ with different thawing methods, but the value of A. elata that was thawed in a microwave oven was higher than those of the other samples. The chlorophyll contents of A. cortex and A. elata that were thawed in a microwave oven were the highest among all the samples. As for the overall preference for the samples according to the thawing method, A. cortex and A. elata scored highest in the case of thawing at 25°C and in a microwave oven, respectively.

Key words : Acanthopanacis cortex, Aralia elata, blanching condition, thawing method

서 론

두릅(Aralia elata)과 오가피(Acanthopanacis cortex)는 두릅나무과(Araliaceae)에 속하는 낙엽관목으로 전국 산지에 서 자생하는 야생식물이며, 소비자의 기호도 매우 높은 대 표적인 냉봤나물이다. 이들의 나무껍질과 뿌리와 약재로, 연한 새순은 고급 나물로 이용되는 등 예로부터 한방과 민간요법, 식용 등으로 이용되어 왔다. 또한 이들 냉봤나물 에는 폴리페놀, 사포닌, 알칼로이드, 강심배양체, 장유 등의 생리활성물질을 비롯하여 비타민 무기질 등의 영양소가

⁵Corresponding author. E-mail : yoonky2441@yu.ac.kr
Phone : 82-53-810-2878, Fax : 82-53-810-4768

- 302 -
으로 연중 공급할 수 있는 방법이 보급되어야 한다(6,7).

나물류를 연중 공급하거나 가공 유통시키기 위해서는
나물의 품질을 유지할 수 있는 처리가 필요하고 저장기간
을 연장하기 위해 냉장 또는 냉동이 수반되며, 또한 조리나
가공을 위해서는 허夢과정을 요구한다. 일반적으로, 체소류
의 전처리로 blanching가 가장 많이 이용되고 있는데, 이중
한 blanching 처리는 제품을 전처리시키거나 간편한 홍질
하여 관리하는 효과를 불변성과 시기 홍질변화를 최소화
시킨다. 하지만 blanching 공정 중 색, 질감, 맛 및 향의 변화,
수용성 성분의 파괴, 저장성 cartenoid의 산화 등의 문제를
발생시킬 수 있다(8,9). 냉동 저장상은 비정상의 변비를 억제하여 저장 중 식품 품질의 변화를 최소화하는 방법으로 육류, 어류를 비롯하여 다양한 식품의 저장성을 향상시키
기 위한 방식으로 주로 사용된다(10). 또한 냉동식품을 조리
또는 가공하기 위해서는 해동을 하게 되는데, 이때 조리의
연화, 변색, 영양성분의 침출 등의 품질 저하를 초래하게
된다(11). 현재 냉동식품을 해동하는 가장 일반적인 방법에
는 공기 해동, 수 해동, 증기 해동, 접촉 해동 등이 있는데,
이러한 해동방법은 외부 가열방식으로 인한 해동 시간,
미생물의 성장, 플립 형성에 따른 무게 손실, 조리의 연화와
같은 문제가 있다(12,13). 따라서 최근에는 해동 시 발생
하는 drip의 양과 품질 저하를 최소화하기 위하여 고압
(high-pressure thawing), microwave (microwave thawing), 전
류(ohmic thawing) 및 음파(acoustic thawing) 등을 이용한 다양한
해동방법에 대한 연구가 활발하다(14). 하지만 이들 해동방
법은 특수한 기계나 장치가 필요하고 비용이 많이 들어
microwave를 제외하고 그 이용상에 한계를 가진다. 따라서
식품의 품질을 유지하고 영양소의 손실을 최소화 할 뿐만
아니라 손쉽게 얻을 수 있는 blanching 조건 및 해동 방법
의 선택이 매우 중요하다.

따라서 본 연구에서는 햇반나물 중 오가피순과 두릅의
소비 확대와 가공품 개발의 전처리로 필수적인 blanching
조건을 설정하기 위해 blanching 온도와 식물의 냉동에 따
른 품질 변화와 식물의 특성을 평가하고자 하였다. 또한
해동조건에 따른 이화학적 특성 및 관능적 특성을 평가하여
오가피순과 두릅의 품질을 향상시킬 수 있는 해동조건을
설정하고자 하였다.

재료 및 방법

실험 재료
본 실험에 사용된 오가피(Acanthopanicis cortex)와 두릅
(Aralia elata)은 2010년 4월 중순에서 2010년 5월 초 경상북도 상주
시에서 쐜취한 8~15cm 정도의 식용 가능한 세송을 상주식
외식농업을 통해 구입하였다.

Blanching 방법
오가피순과 두릅의 blanching 조건에 따른 품질 특성을
측정하기 위하여 시료(400 g)의 15매(6 L)에 해당하는 물을
기열하여 95℃에서 끓인 후 오가피 순 식용수 1분간 수축하고,
salad spinner (Caous, WINDAX, Seoul, Korea)를 이용하여
물기를 제거한 다음 분석에 이용하였다. 이때 blanching 조
건은 냉동실을 통해 설정된 식염농도와 온도에 준하였으나,
즉, 식염의 농도는 0%, 1%, 그리고 2%로 하였으며,
blanching 시간은 4분 또는 7분으로 하였다. 각각의 조건에
서 대표 오가피순과 두릅의 색도, chlorophyll 함량, texture
및 관능검사를 실시하여 품질 특성을 비교하였다.

냉동 및 해동 방법
오가피순과 두릅의 냉동은 blanching한 시료를 200 g씩
건조포장하여 -42℃에서 냉동하였다. 즉 95℃에서 4분간
blanching하고 후 오가피 순 식용수 1분간 수축 후 salad spinner
(Caous, Korea)를 이용하여 물기를 제거하였다. 각 조건에서
blanching한 오가피순과 두릅을 200 g로 쪼개고 있는 함정
수지복합재층(nylon+Linear low-density polyethylene
(LLDPE) film (NVSR-1152, Zeropack, Seoul, Korea)에 넣
으며 건조포장기(IS-100, Zeropack, Seoul, Korea)를 이용하여
기간 후 -42℃에서 냉동(MDF-435, Sanyo, Tokyo, Japan)
보관하였다. 1개월 동안 냉동된 오가피순과 두릅을 저온
(4℃), 상온(25℃) 및 microwave (700 W)에서 시료의 중심부
온도가 5℃(저온 24시간, 상온 1시간, microwave 1분)가 되
제거와 해동하였다. 각각의 조건에서 해동된 두릅의 오가
피순의 색도, chlorophyll 함량, texture 및 관능검사를 실시
하여 해동방법에 따른 품질 변화를 측정하였다.

색도 측정
시료의 색도는 측색계(Model CR-300, Minolta, Tokyo,
Japan)를 이용하여 L*,a*,b* (광도, light), a* (a*: 녹색도, a+ : 적색도), b* (b*: 쌩적도, b+: 황색도)으로 표시하였으나,
백색판을 기준으로 오가피순과 두릅의 색도 각각 3회
반복 측정하였고, blanching 전의 오가피순과 두릅의 색도
를 대조로 하였다.

총 chlorophyll 함량
시료의 총 chlorophyll 함량은 Macinnery의 방법(15)에
따라 시료를 80% acetone으로 추출한 다음 분광광도계
(U-2000, Hitachi, Japan)로 측정한 후 황색도로부터 총
chlorophyll 함량을 계산하였으며, blanching은 다른 시료
를 대조로 하였다.

Texture 측정
각 조건에서 blanching 및 해동한 오가피순과 두릅의
texture는 Texture Analyser (QTS-25, Stevens, London, UK)
을 사용하여 측정하였다. 지름과 비슷한 오가피순과 두릅
의 줄기는 5 cm 깊이로 자른 다음, 각각의 시료에 대하여 물성을 비교 분석하였다. Test mode는 TPA로 two bite test (compression)를 실시하였으며, hardness, gumminess, chewiness에 대해 각각 3회 반복 측정하였다. 분석 조건은 test speed 2.0 mm/sec, deformation ratio 50%, plunger diameter는 1 mm이었다.

관능검사
두유와 오가피의 Blanching 조건과 해당조건에 따른 관능적 품질 특성을 조사하기 위해 식품영양학과 대학원생 20명을 대상으로 실험의 목적을 잘 인지하도록 반복 훈련시킨 후, 오가피순 두유의 맛, 샳, 항, 질감 및 전체적인 기호도의 각 항목을 5점 척도(1점: 매우 싫다, 3점: 보통이다, 5점: 매우 좋다)로 관능검사를 실시하였다.

통계처리
오가피순 두유의 Blanching 조건 및 해당조건에 따른 각각의 품질 특성은 3회 반복 측정하였으며, 자료의 통계처리는 PASW statistics 18.0 프로그램을 이용하여 p<0.05 수준에서 일원배치 분산분석법을 시행하였으며, 각 실험군 평균치간의 유의적 차이는 Duncan's multiple range test로 검증하였다.

결과 및 고찰
Blanching 조건에 따른 색도 변화
Blanching 시간과 색이의 점차가를 달리하여 Blanching한 오가피의 임의 색도 변화를 측정하였으며, 그 결과는 Table 1과 같았다. 색시료에 비해 Blanching 시료의 L값은 감소하였고, a값은 Blanching에 의해 다소 증가하였으며 색이의 농도가 증가할수록 a값은 증가하였다. 또한 b값은 색의 농도가 증가할수록 그 값은 유의적으로 감소하였다. Jung 등(8)은 Blanching 조건과 가열조건에 따른 참취의 석도를 측정한 결과, 식염 점차에 따라 a값은 높아지고, b값은 낮아지는 경향을 보였다고 보고한 반면 연구결과와 유사한 경향을 나타내었다. 또한 참나무의 Blanching 중 석염의 점차에 의해서 일의 표면 중 L값의 변화는 없었으며, b값은 감소하였으나 유의적인 차이는 나타내지 않았다는보고(16)과도 유사한 경향을 나타내었다.

식염의 점차량 및 시간을 달리하여 Blanching한 두유의 품질 변화를 측정한 결과는 Table 2와 같다. L값의 경우 생성료에서 가장 낮은 값을 나타내었으며, Blanching 후 L값이 증가하였고, 식염의 농도가 증가할수록 L값이 유의적으로 감소하였다. a값은 생성료에 비해 감소하였으며, 석염의 점차량이 증가함수록 a값은 증가하였다. b값도 a값과 유사한 경향을 보였으며, 생성료의 b값이 가장 높았으며, Blanching에 의해 그 값이 감소하였으며, 석염 점차량이 증가함수록 b값은 감소하였다. 이러한 결과로 살펴봤을 때, 두유는 Blanching을 함으로써 시료의 발과는 증가하고 a값과 b값은 감소하여 후속색을 더 많이 드는 것을 알 수 있었다.

| Table 1. Effects of Blanching time and salt concentrations on Hunter color in Acanthopanax coryifolius |

<table>
<thead>
<tr>
<th>Blanching Time (min)</th>
<th>Salt conc. (%)</th>
<th>Hunter color</th>
<th>L</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>36.80±1.80</td>
<td>-15.97±3.02</td>
<td>+21.80±4.50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>31.21±1.05</td>
<td>-11.80±3.00</td>
<td>+17.34±0.87</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>33.70±1.56</td>
<td>-12.14±0.14</td>
<td>+19.48±0.53</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>37.68±2.93</td>
<td>-15.94±1.87</td>
<td>+30.58±1.41</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>37.07±1.43</td>
<td>-14.34±0.25</td>
<td>+23.90±0.92</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>31.92±2.94</td>
<td>-16.57±0.24</td>
<td>+17.68±0.83</td>
<td></td>
</tr>
</tbody>
</table>

Mean±SD (n=3).
Color measurement recorded as L, lightness; a, redness; b, yellowness.
Values in the column with different superscript letter are significantly different at p<0.05.

| Table 2. Effects of Blanching time and salt concentrations on Hunter color in Aralia elata |

<table>
<thead>
<tr>
<th>Blanching Time (min)</th>
<th>Salt conc. (%)</th>
<th>Hunter color</th>
<th>L</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>31.52±2.32</td>
<td>+1.23±0.61</td>
<td>+14.08±1.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>57.63±15.04</td>
<td>-15.28±0.84</td>
<td>+33.98±3.81</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35.59±3.39</td>
<td>-13.00±0.76</td>
<td>+24.24±2.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.97±1.33</td>
<td>-7.71±0.49</td>
<td>+22.59±1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>49.29±1.94</td>
<td>-15.72±0.99</td>
<td>+36.24±1.57</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39.26±1.02</td>
<td>-13.55±0.64</td>
<td>+26.48±1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34.21±1.97</td>
<td>-7.05±0.42</td>
<td>+18.72±0.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean±SD (n=3).
Color measurement recorded as L, lightness; a, redness; b, yellowness.
Values in the column with different superscript letter are significantly different at p<0.05.

Blanching 조건에 따른 chlorophyll의 함량 변화
Blanching 조건에 따른 오가피순 두유의 chlorophyll 함량을 측정한 결과는 Table 3과 같았으며, 대부분의 조건에서 Blanching에 의해 chlorophyll의 함량이 감소하였음을 알 수 있었다. 특히 오가피순의 경우 생성료의 chlorophyll 함량이 143.5 mg/g에 반해 2% 식염농도에서 4분과 7분에서 Blanching을 하였을 경우 각각 67.6 mg/g와 93.1 mg/g로 그 함량이 급격히 감소하였다. Jung 등(8)은 1%와 2% 식염농도에서 Blanching한 참취의 chlorophyll의 함량을 측정한 결과 1% 식염농도에 비해 2% 식염농도에서 Blanching한 참취의 chlorophyll 함량이 증가하였다고 보고하였다. 또한
Kim 등(17)은 2% 식염수로서 blanching한 수리취의 총 chlorophyll 함량이 유의적으로 증가하였다고 보고하였으나, Lee (18)는 Na2SO4의 점가에 의해서 chlorophyll의 용출이 억제된다고 보고하여 본 연구 결과와 상반된 경향을 나타내었다. Chlorophyll 함량은 오가피순의 적색도와 비교하였을 때, 오가피순의 a값이 낮을수록 chlorophyll 함량이 높게 나타나 오가피순의 적색도와 chlorophyll 함량에 양의 관계를 나타내었다.

<table>
<thead>
<tr>
<th>Table 3. Chlorophyll content of Acanthopanax cortex and Aralia elata blanched by different blanching time and salt concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanching Time (min)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mean±SD (n=3).
Values in the column with different superscript letter are significantly different at p<0.05.

두물의 경우 7분간 blanching을 실시하였을 경우, 식염의 농도에 관계없이 50% 이상의 chlorophyll 함량이 감소하면서 blanching 시간에 따라 chlorophyll의 함량이 크게 영향을 받을 것을 알 수 있었다. Teng와 Chen(19)의 시험결과에 관한 연구에서 blanching 시간이 증가함수록 총 chlorophyll의 함량이 감소한다고 보고한 본 연구 결과와 유사한 경향을 나타내었다. 하지만 두물의 chlorophyll 함량이 약 50%로 유의적인 강한 흔적이 나타나지 않았는데, 이는 식품마다 다르고 증거에 분포되어 있는 chlorophyll a와 chlorophyll b의 비율 및 carotenoid의 존재량이 상이하기 때문일 것으로 판단된다(20). 일반적으로 chlorophyll은 식물체 중에서 단백질과 약한 결합체로 존재하고 있으며, 가열에 의해 분리되고 분리된 단백질의 양과 짧아져야 하는 것으로 보고되고 있다(21). 본 연구에서는 두 식물 모두 식염 첨가 없이 4분간 blanching을 실시하였을 때 chlorophyll이 가장 잘 유 지되는 것으로 나타났다.

Blanching 조건에 따른 texture의 변화
오가피순의 blanching 조건에 따른 texture를 측정한 결과 Table 4와 같이 hardness, gumminess, chewiness 모든 항목에서 생체율에 비해 낮은 값을 나타내었다. 특히 7분간 blanching한 오가피순의 감소율이 컸으며, 식염의 농도가 증가함수록 모든 항목에서 그 값이 감소하였다. 반면 4분간 blanching한 경우에는 식염의 농도가 1%일 경우 hardness, gumminess, chewiness의 값이 각각 610.7 g, 80.5 g, 171.7 gmm으로 식염을 첨가하지 않거나 2%를 첨가한 경우보다 높은 값을 나타내었다.

<table>
<thead>
<tr>
<th>Table 4. Texture of Acanthopanax cortex blanched by different blanching time and salt concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanching Time (min)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mean±SD (n=3).
Values in the column with different superscript letter are significantly different at p<0.05.

두물의 경우, 식염의 농도가 증가함수록 hardness는 감소하였으나 gumminess와 chewiness는 증가하는 경향을 보였으나 유의적인 차이는 나타나지 않았다. 식염(1%, 2%)을 첨가하여 blanching한 샘플의 경우 식염을 첨가하지 않고 blanching한 샘플에 비해 약 14~17%의 경도 증가를 나타내었고(8), 3%의 식염을 첨가하여 blanching한 고사리의 경우 세포를 보호하는 해산물의 함량이 증가하였다고 보고(22)하여 본 연구 결과와 유사한 경향을 나타내었다. Blanching 시간에 따른 texture의 특성을 살펴보면, 4분간 blanching한 두물의 hardness, gumminess, chewiness가 7분간 blanching한 두물에 비해 그 값이 높게 측정되었으며, 유의적인 차이를 보였다. 이와 같이 가열시간이 증가에 따라 변화가 더욱 크게 발생하는 것은 세포를 보호하고 있는 해산물이 가열에 의해서 가용화되기 때문인 것으로 판단된다(23, 24).

<table>
<thead>
<tr>
<th>Table 5. Texture of Aralia elata blanched by different blanching time and salt concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanching Time (min)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mean±SD (n=5).
Values in the column with different superscript letter are significantly different at p<0.05.
Blanching 조건에 따른 관능적 특성
오가피순을 blanching 시간과 설탕의 농도에 따른 색상 (color), 맛 (taste), 종미 (flavor), 질감 (texture) 및 전체적인 기호도 (overall preference)를 조사한 결과는 Table 6에 나타내었다. 색상은 1% 설탕농도에서 4분간 blanching한 오가피순이 4.0점으로 가장 높았고, 0% 또는 2% 설탕농도에서 4분간 blanching한 오가피순 각각 3.9점, 3.6점으로 나타났으나 유의적인 차이가 없었다. 이러한 결과는 1% 설탕농도에서 4분간 blanching한 오가피순이 녹색을 잘 유지하고 있었기 때문으로 판단되며, 같은 조건에서 chlorophyll 함량이 가장 높았던 결과와 일치하는 것을 알 수 있다. 맛의 경우 설탕을 첨가하지 않고 4분간 blanching한 오가피순의 짙수 (3.3점)가 가장 높았고 설탕을 첨가하지 않고 7분간 blanching한 오가피순 (3.2점)이 그 다음 순위를 차지하였다. 하지만 blanching 시간에 상관없이 설탕을 첨가한 오가피순이 맛은 낮은 점수를 나타내었는데, 이는 설탕이 오가피 특유의 맛을 강화시킨 결과25)로 판단된다. 종미는 1% 설탕농도 및 설탕을 첨가하지 않고 4분간 blanching한 오가
피순이 각각 3.7점과 3.6점으로 가장 높았으며, 2% 설탕농도에서 7분간 blanching한 오가피순이 2.9점으로 가장 높았다. 질감은 설탕첨가 없이 4분간 blanching한 오가피순이 3.7점으로 가장 높았으며, 설탕의 농도가 증가할수록 blanching 시간이 길어질수록 젖수가 낮았다. 녹색세포의 blanching할 때 설탕은 성형의 녹색을 유지시켜주는 역할을 하는 반면, 조직의 인화를 촉진시켜 관능적 질감을 감소시키는 역할을 한다26). 전체적인 기호도는 0, 1, 2% 설탕농도에서 4분간 blanching한 오가피순 각각 3.7, 3.2, 3.2점으로 설탕첨가 없이 blanching한 오가피순의 값이 가장 높았으나 유의적인 차이는 없었다. 반면 무청이나 1, 2% 설탕농도에서 7분간 blanching한 오가피순의 전체적인 기호도가 각각 2.6, 2.6, 2.7점으로 그 값이 매우 낮게 나타났다. 이는 전체적인 기호도에 질감이 많이 작용하여 blanching 시간이 길어질수록 그 값이 낮게 나타난 것으로 판단된다.

Table 6. Sensory properties of Acanthopanax corymbosus blanched by different blanching time and salt concentrations

<table>
<thead>
<tr>
<th>Blanching Time (min)</th>
<th>Salt conc. (%)</th>
<th>Sensory properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Color</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3.9±0.9</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4.0±0.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.6±1.4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1.9±0.9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.0±1.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5±1.1</td>
</tr>
</tbody>
</table>

Mean±SD (n=3). Values in the column with different superscript letter are significantly different at p<0.05.

Table 7. Sensory properties of Aralia elata blanched by different blanching time and salt concentrations

<table>
<thead>
<tr>
<th>Sensory properties</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Blanching Time (min)</th>
<th>Salt conc. (%)</th>
<th>Color</th>
<th>Taste</th>
<th>Flavor</th>
<th>Texture</th>
<th>Overall preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>3.5±1.0</td>
<td>3.1±1.4</td>
<td>3.2±1.1</td>
<td>3.3±0.9</td>
<td>3.7±1.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.3±1.1</td>
<td>3.0±1.6</td>
<td>3.1±0.8</td>
<td>3.3±0.7</td>
<td>3.3±0.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.4±1.2</td>
<td>2.9±1.2</td>
<td>2.8±0.8</td>
<td>3.4±1.0</td>
<td>3.1±0.9</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>3.5±1.5</td>
<td>3.2±0.9</td>
<td>2.9±1.1</td>
<td>3.7±0.9</td>
<td>3.6±1.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.8±0.9</td>
<td>2.1±0.9</td>
<td>2.7±1.0</td>
<td>1.5±0.8</td>
<td>2.0±1.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.7±0.7</td>
<td>2.3±0.8</td>
<td>2.3±0.9</td>
<td>1.4±0.7</td>
<td>1.8±0.7</td>
</tr>
</tbody>
</table>

Mean±SD (n=3). Values in the column with different superscript letter are significantly different at p<0.05.

해동 방법에 따른 색도 변화
해동된 오가피순과 두유를 저장(4°C), 상온(25°C), microwave (700 W)에서 저장한 후 색도의 변화를 조사하였으며, 그 결과는 Table 8과 같다. Microwave에서 해동한 오가피가 저장 또는 상온에서 해동한 오가피에 비해 L*값 (52.14)은 높았으며, a*값 (-20.32)는 낮아 microwave를 이용하여 해동한 경우 밝기가 감소 맑음을 가장 잘 유지하고 있음을 알

 bladder blanching 시간과 설탕의 농도에 따른 색상 (color), 맛 (taste), 종미 (flavor), 질감 (texture) 및 전체적인 기호도 (overall preference)를 조사한 결과는 Table 7에 나타내었다. 색상의 경우 설탕첨가 없이 4분 또는 7분간 blanching한 두유가 3.5점으로 가장 높았고, 2% 설탕농도에서 7분간 blanching한 두유의 점수 (1.7점)가 가장 높았다. 또한 blanching 시간이 길고 설탕의 농도가 증가할수록 색상에 대한 점수가 낮은 경향을 보였다. 맛의 경우 설탕첨가 없이 7분간 blanching한 두유가 3.2점으로 가장 높았으나, 설탕을 첨가했을 경우에는 4분간 blanching한 두유가 7분간 blanching한 두유에 비해 점수가 유의적으로 높게 나타났다. 종미는 blanching 시간이 길고 설탕의 농도가 증가할수록 유의적으로 낮은 점수를 나타내었으며, 설탕첨가 없이 4분간 blanching한 두유의 점수가 3.2점으로 가장 높게 나타났다. 절감은 설탕첨가 없이 7분간 blanching한 두유의 점수가 3.7점으로 가장 높았으며, 0, 1, 2% 설탕농도에서 4분간 blanching을 실시한 두유가 각각 3.3, 3.3, 3.4점으로 평평되었고, 각 식료에 대한 유의적인 차이는 나타나지 않았다. 하지만 1% 또는 2% 설탕농도에서 7분간 blanching한 두유는 각각 1.5점과 1.4점으로 매우 낮은 값을 나타내었다. 전체적인 기호도는 설탕첨가 없이 4분 또는 7분 동안 blanching한 두유가 각각 3.7점과 3.6점으로 나타났으며, 절감과 같은 경향을 나타내었다. 이는 절감이 전체적인 기호도에 많은 영향을 미쳤기 때문으로 판단된다.
수 있다. 반면 b값의 경우, 상온에서 해동한 오가피의 b값이 가장 높게 측정되었으나 해동방법에 따른 유의적인 차이는 없었다. 두통의 경우, L, b값은 유의적인 차이가 없었고, a값은 microwave 해동의 경우 -14.81로 유의적으로 가장 낮아 녹음을 가장 잘 유지하고 있음을 알 수 있다. Kwon 등(11)은 해동방법을 달리하여 내동매실의 색도를 측정한 결과, microwave 해동 시 생매실과 유의적인 값의 변화를 나타내지 않았으나 싸문에서 해동한 경우에 비해 b값이 감소하였다고 보고하였다. 또한 내동된 동치미 무를 상온 (27℃), 저온(4℃) 또는 microwave 해동한 후 이들의 색도를 측정한 결과, microwave로 해동한 동치미 무의 L값이 가장 높았고 a값은 가장 낮은 값을 나타내었다고 보고(27)해 오가피의 연구 결과와 유사한 경향을 나타내었다.

Table 9. Chlorophyll content of Acanthopanacis cortex and Aralia elata blanched by different thawing methods

<table>
<thead>
<tr>
<th>Thawing methods</th>
<th>Chlorophyll content (mg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. cortex</td>
</tr>
<tr>
<td>4℃</td>
<td>45.2±16.2a</td>
</tr>
<tr>
<td>25℃</td>
<td>47.9±22.5a</td>
</tr>
<tr>
<td>Microwave (700W)</td>
<td>88.6±5.8a</td>
</tr>
</tbody>
</table>

Mean±SD (n=3). Values in the column with different superscript letter are significantly different at p<0.05.

해동 방법에 따른 texture의 변화
오가피순과 두물을 저온(4℃), 상온(25℃), microwave에서 해동하여 해동 후의 texture를 조사한 결과는 Table 10과 같다. 오가피의 경우, hardness는 상온에서 해동한 오가피순의 값이 192.3g으로 가장 높았으며, microwave을 이용하여 해동한 경우 153.7g으로 가장 낮은 값을 나타내었으며, 유의적인 차이는 없었다. 이는 microwave가 해동시간을 단축하고, 변색 및 양조소 손실의 최소화하며 drip의 양을 줄일 수 있는 좋은 해동방법이나 microwave에 의해 식품 내부의 수분이 가열되며 인해 조직의 변화가 다소 일어났기 때문으로 판단된다(14). 반면 guinnessiness과 chewiness 는 microwave를 실시한 경우 가장 높은 값을 나타내었지만 해동방법에 따른 유의적인 차이는 나타나지 않았다. 두통의 경우, 상온에서 해동한 두물의 hardness, guinnessiness, chewiness가 각각 206.0g, 70.6g, 128.2 gmm으로 가장 높은 값을 나타내었으며, 다음으로 microwave, 저온 해동 순으로 그 값이 높았으나 유의적인 차이는 나타나지 않았다. 이것은 동일한 크기와 가격의 오가피순과 두물을 시료로 사용했을 때도 불구하고 생체 시료 개체간의 차이에 의해 발생된 결과라고 판단된다.

Table 10. Texture of Acanthopanacis cortex and Aralia elata thawed by different thawing methods

<table>
<thead>
<tr>
<th>Samples</th>
<th>Thawing methods</th>
<th>Hardness (g)</th>
<th>Guinnessiness (gmm)</th>
<th>Chewiness (gmm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4℃</td>
<td>A. cortex</td>
<td>182.3±50.0a</td>
<td>88.5±28.2a</td>
<td>147.1±82.9a</td>
</tr>
<tr>
<td></td>
<td>Microwave</td>
<td>192.3±42.5</td>
<td>71.0±16.4</td>
<td>113.6±22.2</td>
</tr>
<tr>
<td>25℃</td>
<td>A. cortex</td>
<td>153.7±18.1</td>
<td>97.2±22.0</td>
<td>147.9±55.6</td>
</tr>
<tr>
<td></td>
<td>Microwave</td>
<td>152.7±18.6a</td>
<td>48.4±18.2a</td>
<td>181.7±49.1a</td>
</tr>
<tr>
<td>A. elata</td>
<td>4℃</td>
<td>206±34.4</td>
<td>70.6±16.5</td>
<td>128.2±14.7</td>
</tr>
<tr>
<td></td>
<td>Microwave</td>
<td>190.3±22.3</td>
<td>57.8±13.0</td>
<td>109.2±35.7</td>
</tr>
</tbody>
</table>

Mean±SD (n=3). *: not significant.

해동 방법에 따른 판관적 특성
오가피순과 두물을 저온(4℃), 상온(25℃), microwave에
서 해동하여 해동 후의 관능적 특성을 평가할 결과는 Table 11과 같이 색, 풍미, 질감 및 전체적인 기호도는 상온(25°C)에서 해동한 오가피순의 기호도가 각각 3.7점, 3.4점, 3.2점, 3.2점으로 가장 높았다. 맛에 대한 기호도는 적어서 해동한 오가피순의 값이 30점으로 가장 높아졌다. 이의 결과로 유추해 볼 때, microwave로 해동하는 경우 오가피순의 경우 색도 및 chlorophyll의 함량은 높으나 염에 의한 변화 등으로 인해 기호도가 매우 감소함을 알 수 있었다. 또한 상온에서 해동한 경우 4일 해동시간으로 인하여 영양소의 손실과 drip 발생, 그리고 미생물의 번식으로 인한 안전성 등의 문제가 발생할 수 있다(11).

두유의 경우에는 오가피와 다른 경향을 나타내었는데, 색상, 맛, 질감 및 전체적인 기호도에서 microwave를 이용하여 해동하였을 경우 각각 3.3점, 3.3점, 3.2점, 3.5점으로 가장 높은 점수를 보였다. 단지 풍미에 있어서만 상온에서 해동한 두유의 값이 3.3점으로 가장 높았다. 두유의 경우 오가피순과 달리 microwave를 이용한 해동방법이 품질의 유지뿐만 아니라 관능적 기호도가 가장 높음을 알 수 있었다. 이와 같이 오가피순과 두유의 해동방법에 따른 관능적 특성 차이는 두유가 오가피순에 비해 없이 두유가 증가되어 microwave에 의한 변화작용을 적게 받았기 때문에 기호도가 높게 나타난 것으로 판단된다.

<p>| Table 11. Sensory properties of Acanthopanax coticus and Aralia elata thawed by different thawing methods |
|--|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Samples</th>
<th>Thawing methods</th>
<th>Sensory properties</th>
<th>Overall preference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Color</td>
<td>Taste</td>
</tr>
<tr>
<td>4°C</td>
<td></td>
<td>2.1±1.1</td>
<td>3.0±0.9</td>
</tr>
<tr>
<td>A cortex</td>
<td>25°C</td>
<td>3.0±0.7</td>
<td>2.7±1.1</td>
</tr>
<tr>
<td>Microwave</td>
<td></td>
<td>3.4±1.2</td>
<td>2.5±0.8</td>
</tr>
<tr>
<td>4°C</td>
<td></td>
<td>3.9±0.6</td>
<td>2.7±0.9</td>
</tr>
<tr>
<td>A. elata</td>
<td>25°C</td>
<td>3.3±0.6</td>
<td>2.8±0.9</td>
</tr>
<tr>
<td>Microwave</td>
<td></td>
<td>3.3±0.9</td>
<td>3.0±0.7</td>
</tr>
</tbody>
</table>

Mean±SD (n=6). Values in the column with different superscript letter are significantly different at p<0.05.

요 약

본 연구는 오가피순과 두유의 소비 환경과 가공품 개발의 전략이 필수적인 blanching 조건을 설정하기 위해 blanching 운도와 식염의 농도에 따른 품질 변화와 관능적 특성을 평가하고자 하였다. 또한 해동조건에 따른 이화학적 및 관능적 특성을 평가하여 오가피순과 두유의 품질을 항상시킬 수 해동조건을 설정하고자 하였다. Blanching은

감사의 글

본 연구는 농촌진흥청 지역농업특성화기술개발사업(과 제번호: 209C0061)의 연구비 지원으로 이루어졌으며, 이에 감사드립니다.

참고문헌

10. Lee JM, Choi NS, Oh JE (2002) Quality characteristics of Nochaborijook changes according to the different type of thawing and storage. Korean J Dietary Cult, 17, 90-95