DOI QR코드

DOI QR Code

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification

Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증

  • 최승용 (국립방재연구소) ;
  • 한건연 (경북대학교 공과대학 건축.토목공학부)
  • Received : 2011.05.17
  • Accepted : 2011.06.13
  • Published : 2011.07.31

Abstract

Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

Acknowledgement

Supported by : 한국건설교통기술평가원

References

  1. 건설교통부(2005) 주요지천 홍수예보 프로그램 개선.
  2. 김성원(2005) 신경망 모형에 의한 홍수위 예측의 신뢰성 분석: I. 모형의 개발 및 적용. 대한토목학회논문집, 대한토목학회, 제25권, 제6-B호, pp. 473-482.
  3. 성지연, 허준행(2009) 통계적 모형을 이용한 지천 홍수 예측. 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 1524-1527.
  4. 현석, 박용운, 홍일표(2007) 미계측 해안 도시유역의 홍수예경보 시스템 구축 방법 검토-부산시 온천천 유역 대상-. 한국수자원학회논문집, 한국수자원학회, 제40권, 제6호, pp. 447-458. https://doi.org/10.3741/JKWRA.2007.40.6.447
  5. 신이범희(2010) 회귀분석에 의한 도시홍수 예보시스템의 개발. 대한토목학회논문집, 한국수자원학회, 제30권, 제4-B호, pp. 347-359.
  6. 정동국, 이범희(2009). 회귀기법을 이용한 도시홍수위 예측모형의 개발. 한국수자원학회논문집, 한국수자원학회, 제43권, 제2호, pp. 221-231. https://doi.org/10.3741/JKWRA.2010.43.2.221
  7. Bedient, P.B., Hoblit, B.C., Gladwell, D.C., and Vieux, B.E. (2000). NEXRAD Radar for flood prediction in Houston. Journal of Hydrologic Engineering, Vol. 5, No. 3, pp. 269-277. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(269)
  8. Carpenter, T.M., Georgakakos, K.P., and Sperfslage, J.A. (2001). On the parametric and Nexrad-Radar sensitivities of a distributed hydrologic model suitable for operational use. Journal of Hydrology, Vol. 253, pp. 169-193. https://doi.org/10.1016/S0022-1694(01)00476-0
  9. Edward, J.C. (2007). The national weather service forecast-responsibility on the nation's rivers. The Journal of Dam Safety, Fall, 2007.
  10. Estrela, T., and Quintas, L. (1994). Use of a GIS in the modeling of flows on floodplains. River flood hydraulics, J.W.R White and J. Watts, Editors, Wiley, pp. 177-189.
  11. Mimikou, M., and Baltas, E. (1996). Rainfall-Runoff model for flood forecasting utilizing weather radar. Proc. Workshop on Intergrating Radar Estimates of Rainfall in Real Time Flood Forecasting, Special Issue, Vol. 16, pp. 87-96.
  12. Syme, W.J., and Paudyal, G.N. (1994). Flood Management Model, 2nd International Conference in River Flood Hydraulics York, UK.

Cited by

  1. A Methodology for Flood Forecasting and Warning Based on the Characteristic of Observed Water Levels Between Upstream and Downstream vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.367