DOI QR코드

DOI QR Code

Characteristics of Enterobacteria from Harmonia axyridis and Effects of Staphylococcus spp. on Development of H. axyridis

무당벌레(Harmonia axyridis ) 장내세균의 특성 및 Staphylococcus spp. 장내세균이 무당벌레의 발육에 미치는 영향

  • Moon, Chung-Woun (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Ki-Kwang (Department of Microbial & Nano Materials, Mokwon University) ;
  • Whang, Kyung-Sook (Department of Microbial & Nano Materials, Mokwon University) ;
  • Seo, Mi-Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young-Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong-Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 문청원 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김기광 (목원대학교 미생물나노소재학과) ;
  • 황경숙 (목원대학교 미생물나노소재학과) ;
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2011.06.08
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

Enterobacteria were isolated in the gut of the predacious multicolored Asian ladybird beetle, Harmonia axyridis, and their effects to the development of H. axyridis were examined. Populations of H. axyridis in this experiment were collected from Kimjae at Cheonbuk province (JK population), Geumsan at Chungnam province (CK population) and laboratory population at Laboratory of Insect Physiology in Chungnam National University, Daejeon. Thirty-four enterobacteria isolates were purified and isolated from the digestive tract of H. axyridis, and a total of 4 strains were classified into group by analysis of 16S rRNA gene sequences. About 70% of total isolates were phylogenetic groups of Bacillus genus and Staphylococcus genus, and they were commonly separated from the digestive tract of H. axyridis. After investigating their susceptibility against antibiotics with 18 representative enterobacteria isolates, ofloxacin and penicillin were selected for examination in this study of their ability to inhibit the growth of all of isolates. In order to remove the enterobacteria from the aphids, ofloxacin and penicillin were given to the green peach aphid, Myzus persicae, and the turnip aphid, Lipaphis erysimi. These aphids were provided to H. axyridis as prey. The weight of pupa, developmental periods of each larval instar, the number of eggs and their hatching ratio of H. axyridis with treatment aphids were lower compared with non-treatment aphids. Staphylococcus saprophyticus is a representative enterobacteria and commonly isolated from the digestive tract of H. axyridis. In the absence of S. saprophyticus, the developmental periods of each larval instar increased; however, the weights of pupa, the number of eggs, and their hatching ratio decreased.

Keywords

Harmonia axyridis;Enterobacteria;Staphylococcus saprophyticus;antibiotic

Acknowledgement

Grant : 해충방제용 미생물 살충제의 현장 활용 평가 기술 개발

References

  1. Applebaum, S.W. 1985. Biochemistry of digestion. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G. A. and Gilbert L.I.), 4: 279-311. Pergamon Press, New York.
  2. Baumann, L. and P. Baumann. 1994. Growth kinetics of the endosymbionts Buchnera aphidicola in the aphid Schizaphis graminum. Appl. Environ. Microbiol. 60: 3440-3443.
  3. Baumann, P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insect. Annu. Rev. Microbiol. 59: 55-89.
  4. Bracke, J.W., D.L. Cruden and A.J. Markovetz. 1979. Intestinal microbial flora of the American cockroache Periplaneta americana L. Appl. Environ. Microbiol. 38: 945-955.
  5. Buchner, P. 1965. Endosymbionts of animals with plant microorganisms. John Wiley & Sons, Inc., New York, N.Y.
  6. Chapman, C.F. 1985. Coordination of digestion. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G. A. and Gilbert L.I.), 4: 213-240. Pergamon Press, New York.
  7. Chen, C.C., B.C. Campbell and A.H. Purcell. 1996. A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr. Microbiol. 33: 123-128. https://doi.org/10.1007/s002849900086
  8. Chen, D.Q. and A.H. Purcell. 1997. Occurrence and transmission of facultative endosymbionts in aphids. Curr. Microbiol. 34: 220-225. https://doi.org/10.1007/s002849900172
  9. Christopher, M.S.M. and S. Mathavan. 1985. Regulation of digestive enzyme activity in the larvae of Catopsilia crocale (Lepidoptera). J. Insect Physiol. 31(3): 217-221. https://doi.org/10.1016/0022-1910(85)90122-2
  10. Darby, A.C., L.M. Birkle, S.L. Turner and A.E. Douglas. 2001. An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol. Ecol. 36: 43-50. https://doi.org/10.1111/j.1574-6941.2001.tb00824.x
  11. Dillon, R.J. and V.M. Dillon. 2004. The gut bacteria of insect : Nonphathogenic interaction. Annu. Rev. Entomol. 49: 71. https://doi.org/10.1146/annurev.ento.49.061802.123416
  12. Douglas, A.E. 1998. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. of Entomol. 43: 17-38. https://doi.org/10.1146/annurev.ento.43.1.17
  13. Fukatsu, T., N. Nikoh, R., Kawai and R. Koga. 2000. The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl. Environ. Microbiol. 66: 2748-2758. https://doi.org/10.1128/AEM.66.7.2748-2758.2000
  14. Fukatsu, T., T. Tsuchida, N. Nikoh and R. Koga. 2001. Spiroplasma symbiont of the pea aphid, Acyrthosiphon siphon pisum (Insecta: Homoptera). Appl. Environ, Microbiol. 67: 1284-1291. https://doi.org/10.1128/AEM.67.3.1284-1291.2001
  15. Hagen, K.S. 1962. Biology and ecology of predaceous Coccinellidae. Annu. Rev. Entomol. 7: 289-326. https://doi.org/10.1146/annurev.en.07.010162.001445
  16. Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin and H.Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
  17. Hukusima, S. and S. Takeda. 1975. Artificial diets for larvae of Harmonia axyridis Pallas (Coleoptera: Coccinellidae), an insect predator of aphids and scale insect. Res. Bull. Agr. Gifu Univ. 38: 49-53.
  18. Ishikawa, H. 1989. Biochemical and molecular aspects of endosymbiosis in insect. Int. Rev. Cytol. 116: 1-45. https://doi.org/10.1016/S0074-7696(08)60637-3
  19. Jim, H. and Peter, L. 2007. Antibiotic, primary symbionts and wing polyphenism in three aphid species. Insect Biochem. Mol. Biol. 37: 886-890. https://doi.org/10.1016/j.ibmb.2007.05.005
  20. Kim, K.K., S.I. Han, C.W. Moon, Y.M. Yu, and K. S. Whang. 2011. Biodiversity and Isolation of Gut Microbes from Digestive Organs of Harmonia axyridis. Kor. J. Microbiol. 47(1): 66-73.
  21. Koga, R., T. Tsuchida and T. Fukatsu 2003. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc. R. Soc. Lond. B 270: 2543-2550. https://doi.org/10.1098/rspb.2003.2537
  22. Matsuka, M. and I. Okada. 1975. Nutritional studies of an aphidophagous coccinellid, Harmonia axyridis (I) Examination of artificial diets for the larval growth with special reference to drone honeybee powder. Bull. Fac. Arg. Tamagawa Univ. 15: 1-9.
  23. Mittler, T.E. 1971. Dietary amino acid requirement of the aphid Myzus persicae affected by antibiotic uptake. J. Nutr. 101: 1023-1028. https://doi.org/10.1093/jn/101.8.1023
  24. Moran, N.A., M.A. Munson, P. Baumann and H. Ishikawa. 1993. Molecular clock in endosymbiotic bacteria is calibrated using the insect host. Proc. R. Soc. Lond. B. 253: 167-171. https://doi.org/10.1098/rspb.1993.0098
  25. Moran, N. A. 2006. Symbiosis. Curr. Biol. 16: R886-R871.
  26. Mrazek J., L. Strosova, K. Fliegerova, T. Kott and J. Kopecny. 2008. Diversity of insect intestinal microflora. Folia Microbiol. 53 (3): 229-233. https://doi.org/10.1007/s12223-008-0032-z
  27. Munson, M.A., P. Baumann and M.G. Kinsey. 1991a. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacterol. 41: 566-568. https://doi.org/10.1099/00207713-41-4-566
  28. Munson, M.A., P. Baumann, M.A. Clark, N.A. Moran, D.J., Voegtlin and B.C. Campbell. 1991. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J. Bacteriol. 173: 6321-6324. https://doi.org/10.1128/jb.173.20.6321-6324.1991
  29. Okada, I. and M. Matsuka. 1973. Artuficial rearing of Harmonia axyridis on pulverized drone honeybee brood. Environ. Ent. 21 (1): 301-302.
  30. Park, H.C. 1993. Systematics and ecology of Coccinellidae (Insecta: Coleoptera) in Korea. Ph. D. Thesis. Korea University.
  31. Prado, S.S., D. Rubinoff and R.P.P. Almeida. 2006. Vertical transmission of a pentatomid caeca- associated symbiont. Ann. Entomo. Soc. Am. 99: 577-585. https://doi.org/10.1603/0013-8746(2006)99[577:VTOAPC]2.0.CO;2
  32. Prado, S.S., M. Golden, A.F. Peter, P. D. Matthew and R.P.P. Almeida. 2009. Demography of gut symbiotic and aposymbiotic Nezara viridula L. (Hemiptera: Pentatomidae). Environ. Entomol. 38 (1): 103-109. https://doi.org/10.1603/022.038.0112
  33. Prado, S.S. and R.P.P. Almeida. 2009. Phylogenetic placement of pentatomid stink bug gut symbiont. Curr. Microbil. 58: 64-69. https://doi.org/10.1007/s00284-008-9267-9
  34. Sandstrom, J.P., J.A. Russell, J.P. White and N.A. Moran. 2001. Independent origin and horizontal transfer of bacterial symbionts of aphids. Mol. Ecol. 10: 217-228. https://doi.org/10.1046/j.1365-294X.2001.01189.x
  35. Schloss P.D., J. Handelsman and F.R. Kenneth. 2006. Bacteria assoxiated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol. 35(3): 625-629. https://doi.org/10.1603/0046-225X-35.3.625
  36. Steinhaus, E.A. 1960. The important of environment factor in the insect microbe ecosystem. Bacteriol. Rev. 24: 365-373.
  37. Tsuchida T., R. Koga and T. Matsumoto. 2002. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural population of pea aphid, Acyrthosiphon pisum. Mol. Ecol. 11: 2123-2135. https://doi.org/10.1046/j.1365-294X.2002.01606.x
  38. Visotto, L.E., M.G.A. Oliveira, R.N.C. Guedes, A.O.B. Ribon and P.I.V. Good-God. 2009. Contribution of gut bacteria to digestion and development of the velvetbean carterpillar, Anticarsia gemmatalis. J. Insect Physiol. 55: 185-191. https://doi.org/10.1016/j.jinsphys.2008.10.017
  39. Walker, A.J., D.M., Glen, and P.R. Shewry. 1999. Bacteria associate with the digestive system of the slug Deroceras reticulatum are not required for protein degestion. Soil Biol. Biochem. 31: 1387-1394. https://doi.org/10.1016/S0038-0717(99)00054-1
  40. Werren, J.H. 1997. Biology of Wolbachia. Ann. Rev. of Entomol. 42: 587-609. https://doi.org/10.1146/annurev.ento.42.1.587
  41. Werren J.H. and S.L. O'Neill. 1977. The evolution of heritable symbionts. In Influence Passenger: Inherited Microorganisms and Arthropod Reproduction (S.L. O'Neill, A.A. Hoffmann, and J.H. Werren, Eds.), pp. 1-41. Oxford University Press, Oxford, U.K.
  42. Wilkinson, T.L. 1998. The elimination of intraacellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp. Biochem. and Physiol. A. 119: 871-881. https://doi.org/10.1016/S1095-6433(98)00013-0