DOI QR코드

DOI QR Code

Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites

곤충병원세균(Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata)의 대사물질을 이용한 "비티플러스" 생물농약 개발

  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2011.05.11
  • Accepted : 2011.08.17
  • Published : 2011.09.30

Abstract

Bacillus thuringiensis (Bt) is a bacterial biopesticide against insect pests, mainly lepidopterans. Spodoptera exigua and Plutella xylostella exhibit significant decreases in Bt susceptibility in late larval instars. To enhance Bt pathogenicity, we used a mixture treatment of Bt and other bacterial metabolites which possessed significant immunosuppressive activities. Mixtures of Bt with culture broths of Xenorhabdus nematophila (Xn) or Photorhabdus temperata ssp. temperata (Ptt) significantly enhanced the Bt pathogenicity against late larval instars. Different ratios of Bt to bacterial culture broth had significant pathogenicities against last instar P. xylostella and S. exigua. Five compounds identified from the bacterial culture broth also enhanced Bt pathogenicity. After determining the optimal ratios, the mixture was applied to cabbage infested by late instar P. xylostella or S. exigua in greenhouse conditions. A mixture of Bt and Xn culture broth killed 100% of both insect pests when it was sprayed twice, while Bt alone killed less than 80% or 60% of P. xylostella and S. exigua, respectively. Other Bt mixtures, including Ptt culture broth or bacterial metabolites, also significantly increased pathogenicity in the semi-field assays. These results demonstrated that the Bt mixtures collectively names "Bt-Plus" can be developed into potent biopesticides to increase the efficacy of Bt.

Acknowledgement

Grant : 화학농약 대체기술

Supported by : 농촌진흥청

References

  1. Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
  2. Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  3. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  4. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
  5. Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889.
  6. Ferre J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533. https://doi.org/10.1146/annurev.ento.47.091201.145234
  7. ffrench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
  8. Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999. Resistance to Baciilus thuringiensis CryAc toxin in three strains of Heliothis virescent proteolytic and SIM study of the larval midgut. Arch. Insect Bitchen. Physiol. 42: 51-63. https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
  9. Gahan, L.J., F. Gould and D.G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-861. https://doi.org/10.1126/science.1060949
  10. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  11. Gilliland, A., C.E. Chambers, E.J. Bone and D.J. Ellar. 2002. Role of Bacillus thuringiensis $Cry1{\delta}$ endotoxin binding in determining potency during lepidopteran larval development. Appl. Environ. Microbiol. 68: 1509-1515. https://doi.org/10.1128/AEM.68.4.1509-1515.2002
  12. Herbert, E. E. and H. Goodrich-Blair. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbiol. 5: 634-646. https://doi.org/10.1038/nrmicro1706
  13. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  14. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
  15. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  16. Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
  17. Kanost, M.R., H. Jiang and X. Yu. 2004. Innate immune responses of a lepidopteran insects, Manduca sexta. Immunol. Rev. 198:97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
  18. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  19. Kim, J. and Y. Kim. 2011. Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua(Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase $A_{2}$. Insect Sci. DOI 10,1111/j. 1744-7917.2010.01363.x.
  20. Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella(Lepidoptera: Yponomeutidae). Biol. Control 42: 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  21. Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm(Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  22. Oppert, B., K.J. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476. https://doi.org/10.1074/jbc.272.38.23473
  23. Park, Y., Y. Yi and Y. Kim. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111. https://doi.org/10.1016/S1226-8615(08)60038-2
  24. Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  25. Pigott, C. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71: 255-281. https://doi.org/10.1128/MMBR.00034-06
  26. Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699. https://doi.org/10.1073/pnas.0306669101
  27. Rausell, C., A.C. Martinez-Ramirez, I. Garcia-Robles and M.D. Real. 2000. A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests. Appl. Environ. Microbiol. 66: 153-1558.
  28. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
  29. Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392.
  30. Seo, Y., H. Jang, K. Kim and Y. Kim. 2010. Comparative analysis of immunsuppressive metabolites synthesized by an entomopathogenic bacterium, Photorhabdus temperata ssp. temperata, to select economic bacterial culture media. Kor. J. Appl. Entomol. 49: 409-416. https://doi.org/10.5656/KSAE.2010.49.4.409
  31. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  32. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3
  33. Song, C.J., S. Seo, S. Shrestha and Y. Kim. 2011. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibits a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J. Microbiol. Biotechnol. 21: 317-322.
  34. Stanley, D.W. and J.S. Miller. 2006. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl. 119:1-13. https://doi.org/10.1111/j.1570-7458.2006.00406.x
  35. Tabashnik, B.E., G.C. Unnithan., L. Masson., D.W. Crowder., X. Li and Y. Carriere. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 29: 11889-11894.
  36. Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000. Resistance to Bt toxins. Science 287: 42.
  37. Tanada, Y. and H.K. Kaya. 1993. Insect pathology, Academic Press, San Diego.
  38. Wang, P., J-Z. Zhao, A. Rodrico-Simon, W. Kain, A.F Janmaat, A.M. Shelton, J. Ferre and J.H. Myers. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73: 1199-1207. https://doi.org/10.1128/AEM.01834-06
  39. Zhang, X., M. Candas, N. B. Griko, L. Rose-Young and L. A. Bulla Jr. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor Bt-R1 expressed in insect cells. Cell Death Differ. 12: 1407-1416. https://doi.org/10.1038/sj.cdd.4401675
  40. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B. 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006

Cited by

  1. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila vol.52, pp.2, 2014, https://doi.org/10.1007/s12275-014-3251-9
  2. Toxicity Evaluation of 'Bt-Plus' on Parasitoid and Predatory Natural Enemies vol.51, pp.1, 2012, https://doi.org/10.5656/KSAE.2012.01.0.001
  3. An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella vol.52, pp.1, 2013, https://doi.org/10.5656/KSAE.2013.01.1.080
  4. A Novel Formulation ofBacillus thuringiensisfor the Control of Brassica Leaf Beetle,Phaedon brassicae(Coleoptera: Chrysomelidae) vol.108, pp.6, 2015, https://doi.org/10.1093/jee/tov245
  5. Enhanced Pathogenicity of Bacillus thuringiensis Mixed with a Culture Broth of an Entomopathogenic Bacterium, Xenorhabdus sp. vol.51, pp.1, 2012, https://doi.org/10.5656/KSAE.2011.12.0.076
  6. Mosquito Control Efficacy of a BtPlus Insecticide and Its Safety Assessment to Aquatic Environment vol.20, pp.3, 2016, https://doi.org/10.7585/kjps.2016.20.3.181
  7. Cellular Immune Response of the Legume Pod Borer, Maruca vitrata, and its Suppression by BtPlus to Enhance Bacillus thuringiensis Pathogenicity vol.21, pp.2, 2017, https://doi.org/10.7585/kjps.2017.21.2.150
  8. Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" vol.52, pp.2, 2013, https://doi.org/10.5656/KSAE.2013.04.1.086
  9. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target vol.114, pp.3, 2013, https://doi.org/10.1016/j.jip.2013.09.006
  10. Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets 2015, https://doi.org/10.5656/KSAE.2015.10.0.048