DOI QR코드

DOI QR Code

Sulforaphane-Induced Apoptosis was Regulated by p53 and Caspase-3 Dependent Pathway in Human Chondrosarcoma, HTB-94

Sulforaphane에 의한 p53 및 caspase-3 의존 신호전달계를 통한 인간 연골암 세포주 HTB-94에서의 세포사멸 기전 연구

  • Received : 2011.04.01
  • Accepted : 2011.05.26
  • Published : 2011.06.30

Abstract

Sulforaphane (SFN) is an isothiocyanate, isolated from glucoraphanin in broccoli and other cruciferaous vegetables. Recent studies have revealed that SFN induces anti-proliferation and apoptosis by cell cycle arrest in various cancer cells. In this study, we investigated the effect of SFN induced apoptosis in chondrosarcoma HTB-94 cells. SFN caused suppression of proliferation and apoptosis in a dose-dependent manner as determined by cell phenotype, MTT assay and FACS analysis in HTB-94 cells. Treatment of SFN led to caspase-3 activation and p53 accumulation as determined by Western blot analysis. Also, SFN significantly induced DNA fragmentation and nuclear degradation though activation of caspase-3, as detected by DNA electrophoresis and immunostaining, respectively. Our results indicate that SFN-induced apoptosis was regulated by p53 and caspase-3 dependent pathways. Furthermore, SFN may act as a potent anti-proliferation agent, and as a promising candidate for molecular-targeting chemotherapy against human chondrosarcoma cells.

Keywords

Chondrosarcoma;sulforaphane;apoptosis;caspase-3

References

  1. Bar, J., N. Moskovits, and M. Oren. 2010. Involvement of stromal p53 in tumor-stroma interactions. Semin. Cell Dev. Biol. 21, 47-54. https://doi.org/10.1016/j.semcdb.2009.11.006
  2. Boulon, S., B. J. Westman, S. Hutten, F. M. Boisvert, and A. I. Lamond. 2010. The nucleolus under stress. Mol. Cell 40, 216-227. https://doi.org/10.1016/j.molcel.2010.09.024
  3. Brooks, J. D., V. G. Paton, and G. Vidanes. 2001. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol. Biomarkers Prev. 10, 949-954.
  4. Cho, S. D., G. Li, H. Hu, C. Jiang, K. S. Kang, Y. S. Lee, S. H. Kim, and J. Lu. 2005. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr. Cancer 52, 213-224. https://doi.org/10.1207/s15327914nc5202_11
  5. Chung, F. L., C. C. Conaway, C. V. Rao, and B. S. Reddy. 2000. Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21, 2287-2291. https://doi.org/10.1093/carcin/21.12.2287
  6. Gamet-Payrastre, L., P. Li, S. Lumeau, G. Cassar, M. A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, and F. Terce. 2000. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60, 1426-1433.
  7. Hecht, S. S. 1995. Chemoprevention by isothiocyanates. J. Cell Biochem. Suppl. 22, 195-209.
  8. Herman-Antosiewicz, A., D. E. Johnson, and S. V. Singh. 2006. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res. 66, 5828-5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
  9. Herman-Antosiewicz, A., H. Xiao, K. L. Lew, and S. V. Singh. 2007. Induction of p21 protein protects against sulforaphane- induced mitotic arrest in LNCaP human prostate cancer cell line. Mol. Cancer Ther. 6, 1673-1681. https://doi.org/10.1158/1535-7163.MCT-06-0807
  10. Kim, J. H., K. Han Kwon, J. Y. Jung, H. S. Han, J. Hyun Shim, S. Oh, K. H. Choi, E. S. Choi, J. A. Shin, D. H. Leem, Y. Soh, N. P. Cho, and S. D. Cho. 2010. Sulforaphane increases cyclin-dependent kinase inhibitor, p21 protein in human oral carcinoma cells and nude mouse animal model to induce $G(_2)/M$ cell cycle arrest. J. Clin. Biochem. Nutr. 46, 60-67.
  11. Kim, S. J., S. G. Hwang, I. C. Kim, and J. S. Chun. 2003. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathways. J. Biol. Chem. 278, 42448-42456. https://doi.org/10.1074/jbc.M304887200
  12. Kim, S. J., J. W. Ju, C. D. Oh, Y. M. Yoon, W. K. Song, J. H. Kim, Y. J. Yoo, O. S. Bang, S. S. Kang, and J. S. Chun. 2002. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332-1339. https://doi.org/10.1074/jbc.M107231200
  13. Mi, L., N. Gan, A. Cheema, S. Dakshanamurthy, X. Wang, D. C. Yang, and F. L. Chung. 2009. Cancer preventive isothiocyanates induce selective degradation of cellular alphaand beta-tubulins by proteasomes. J. Biol. Chem. 284, 17039-17051. https://doi.org/10.1074/jbc.M901789200
  14. Mi, L., Z. Xiao, B. L. Hood, S. Dakshanamurthy, X. Wang, S. Govind, T. P. Conrads, T. D. Veenstra, and F. L. Chung. 2008. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J. Biol. Chem. 283, 22136-22146. https://doi.org/10.1074/jbc.M802330200
  15. Misiewicz, I., K. Skupinska, and T. Kasprzycka-Guttman. 2003. Sulforaphane and 2-oxohexyl isothiocyanate induce cell growth arrest and apoptosis in L-1210 leukemia and ME-18 melanoma cells. Oncol. Rep. 10, 2045-2050.
  16. Myzak, M. C. and R. H. Dashwood. 2006. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett. 233, 208-218. https://doi.org/10.1016/j.canlet.2005.02.033
  17. Park, S. Y., G. Y. Kim, S. J. Bae, Y. H. Yoo, and Y. H. Choi. 2007. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol. Rep. 18, 181-187.
  18. Parnaud, G., P. Li, G. Cassar, P. Rouimi, J. Tulliez, L. Combaret, and L. Gamet-Payrastre. 2004. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48, 198-206. https://doi.org/10.1207/s15327914nc4802_10
  19. Pham, N. A., J. W. Jacobberger, A. D. Schimmer, P. Cao, M. Gronda, and D. W. Hedley. 2004. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer. Ther. 3, 1239-1248.
  20. Pledgie-Tracy, A., M. D. Sobolewski, and N. E. Davidson. 2007. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol. Cancer. Ther. 6, 1013-1021.
  21. Qazi, A., J. Pal, M. Maitah, M. Fulciniti, D. Pelluru, P. Nanjappa, S. Lee, R. B. Batchu, M. Prasad, C. S. Bryant, S. Rajput, S. Gryaznov, D. G. Beer, D. W. Weaver, N. C. Munshi, R. K. Goyal, and M. A. Shammas. 2010. Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl. Oncol. 3, 389-399. https://doi.org/10.1593/tlo.10235
  22. Roy, S. K., R. K. Srivastava, and S. Shankar. 2010. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J. Mol. Signal 5, 10. https://doi.org/10.1186/1750-2187-5-10
  23. Rudolf, E., H. Andelova, and M. Cervinka. 2009. Activation of several concurrent proapoptic pathways by sulforaphane in human colon cancer cells SW620. Food Chem. Toxicol. 47, 2366-2373. https://doi.org/10.1016/j.fct.2009.06.034
  24. Singh, A. V., D. Xiao, K. L. Lew, R. Dhir, and S. V. Singh. 2004. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25, 83-90.
  25. Singh, S. V., A. Herman-Antosiewicz, A. V. Singh, K. L. Lew, S. K. Srivastava, R. Kamath, K. D. Brown, L. Zhang, and R. Baskaran. 2004. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. Biol. Chem. 279, 25813-25822. https://doi.org/10.1074/jbc.M313538200
  26. Tang, L., Y. Zhang, H. E. Jobson, J. Li, K. K. Stephenson, K. L. Wade, and J. W. Fahey. 2006. Potent activation of mitochondria- mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol. Cancer Ther. 5, 935-944. https://doi.org/10.1158/1535-7163.MCT-05-0476
  27. Zhang, Y., T. W. Kensler, C. G. Cho, G. H. Posner, and P. Talalay. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. USA 91, 3147-3150. https://doi.org/10.1073/pnas.91.8.3147
  28. Zielinski, C. C., T. Brodowicz, C. Wiltschke, D. Kandioler-Eckersberger, T. W. Grunt, M. Rudas, S. M. Schneider, M. Hejna, and A. Budinsky. 1999. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-a and retinoids. British J. Cancer 80, 1350-1358. https://doi.org/10.1038/sj.bjc.6690528

Cited by

  1. Inhibition of Cell Proliferation and Induction of Apoptosis by Ethanolic Extract of Lespedeza cuneata G. Don in Human Colorectal Cancer HT-29 cells vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.911
  2. Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.663
  3. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5115

Acknowledgement

Supported by : 한국연구재단