DOI QR코드

DOI QR Code

Sensitivity Analysis by Using Global Imager for Retrieval of Biomass Burning Aerosols

  • Lee, Hyun-Jin (Department of Atmospheric Science, Pusan National University) ;
  • Kim, Jae-Hwan (Department of Atmospheric Science, Pusan National University)
  • Received : 2010.12.02
  • Accepted : 2011.03.23
  • Published : 2011.06.30

Abstract

The purpose of this study is to evaluate the strength of the near-UV wavelength of 380 nm relative to visible and near-IR bands, and to find the suitable wavelength for detecting aerosols by using the Global Imager (GLI) sensor aboard the Advanced Earth Observing Satellite-II (ADEOS-II). Sensitivity analysis is performed for the retrieval of biomass burning aerosols by employing the radiative transfer model Rstar5b. It is determined that background surface reflectance in the blue band is similar to that in the near-UV band, and that wavelengths in the blue bands are more sensitive to the Aerosol Optical Thickness (AOT) than wavelengths in the near-UV band. The Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) is used in the indirect method used for aerosol retrieval, and the wavelength pair 380 nm and 460 nm is determined to be the most sensitive to the AOT. The results of this study suggest that wavelengths in the blue bands are suitable for detecting biomass burning aerosols over the Korean peninsula.

References

  1. Alpert, P., Kaufman, Y.J., Shay-EL, Y., Tanre, D., Da Silva, A., Joseph, Y.H. (1998) Quantification of dustforced heating of the lower troposphere. Nature 395, 367-370. https://doi.org/10.1038/26456
  2. d'Almeida, G.A., Koepke, P., Shettle, E.P. (1991) Atmospheric aerosols: Global climatology and radiative characteristics. A. Deepak Pub., USA.
  3. Dubovik, O., Smironov, A., Holben, B.N., King, M.D., Kaufman, Y.J., Eck, T.K., Slutsker, I. (2000) Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research 105, 9791-9806, doi:10.1029/2000JD900040. https://doi.org/10.1029/2000JD900040
  4. Gordon, H.R., Wang, M. (1992) Surface-roughness considerations for atmospheric correction of oceans with SeaWiFS: A preliminary algorithm. Applied Optics 31, 4261-4267. https://doi.org/10.1364/AO.31.004261
  5. Hauser, A., Oesch, D., Wunderle, S. (2004) NOAA AVHRR derived Aerosol Optical Depth (AOD) over Land: A comparison with AERONET data. Optica Puray Aplicada 37, 3131-3135.
  6. Herman, J.R., Celarier, E.A. (1997) Earth surface reflectivity climatology at 340-380 nm from TOMS data. Journal of Geophysical Research 102, 28003-28011, doi:10.1029/97JD02074. https://doi.org/10.1029/97JD02074
  7. Higurashi, A., Nakajima, T. (1999) Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR. Journal of the Atmospheric Sciences 56, 924-941. https://doi.org/10.1175/1520-0469(1999)056<0924:DOATCA>2.0.CO;2
  8. Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Stezer, A., Vermote, E., Reagan, Y., Kaufman, U.J., Nakajima, T., Lavenu, F., Jankpwiak, I., Smimov, A. (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment 66, 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  9. In, H.J., Kim, Y.P., Lee, K.H. (2008) Regional aerosol optical thickness distribution derived by CMAQ model in the siberian forest fire emission episode of May 2003 (Borrego, C. and Mirana, A.I. Eds), Air Pollution Modeling and Its Application XIX, Springer, 2,118-126, doi:10.1007/978-1-4020-8453-9_13.
  10. Jaffe, D., Berschi, I., Jaeglé, L., Novell, P., Reid, J.W., Tanimoto, H., Vingarzan, R., Westphal., D.L. (2004) Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophysical Research Letters 31, L16106, doi:10.1029/2004GL020093. https://doi.org/10.1029/2004GL020093
  11. Kaufman, Y.J., Tanré, D. (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing 30, 261-270. https://doi.org/10.1109/36.134076
  12. King, M.D., Kaufman, Y.J., Tanré, D., Nakajima, T. (1999) Remote sensing of tropospheric aerosols from space: Past, Presents, and Future. Bulletin of the American Meteorological Society 80, 2229-2259. https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
  13. Lee, K.H., Kim, J.E., Kim, Y.J., von Hoyningen-Huene, W. (2005) Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003. Atmospheric Environment 39, 85-99. https://doi.org/10.1016/j.atmosenv.2004.09.032
  14. Miller, R.L., Tengen, I. (1998) Climate response to soil dust aerosols. Journal of Climate 11, 3247-3267. https://doi.org/10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2
  15. Nakajima, T., Tanka, M. (1986) Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer 35, 13-21. https://doi.org/10.1016/0022-4073(86)90088-9
  16. Nakajima, T., Tanka, M. (1988) Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. Journal of Quantitative Spectroscopy and Radiative Transfer 40, 51-69. https://doi.org/10.1016/0022-4073(88)90031-3
  17. Nakajima, T.Y., Murakami, H., Hori, M., Nakajima, T., Aoki, T., Oishi, T., Tanaka, A. (2003) Efficient use of an improved radiative transfer code to simulate nearglobal distributions of satellite-measured radiances. Applied Optics 42, 3460-3471. https://doi.org/10.1364/AO.42.003460
  18. Schwartz, S.E., Arnold, F., Blanchet, J.-P., Durkee, P.A., Hofmann, D.J., Hoppel, W.A., King, M.D., Lacis, A.A., Nakajima, T., Ogren, J.A., Toon, O.B., Wendisch, M. (1995) Group report: Connections between aerosol properties and forcing of climate (Charlson, R.J. and Heintzenberg, J. Eds), Aerosol Forcing of Climate, John Wiley and Sons, pp. 251-280.
  19. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. USA, pp. 718-727.
  20. Soufflet, V., Tanre, D., Royer, A., O'Neil, N.T. (1997) Remote sensing of aerosols over boreal forest and late water from AVHRR data. Remote Sensing of Environment 60, 22-34. https://doi.org/10.1016/S0034-4257(96)00127-7
  21. Torres, O., Bhartia, P.K., Herman, J.R., Ahmad, Z., Gleason, J. (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. Journal of Geophysical Research 103, 17099-17110, doi:10.1029/ 98JD00900. https://doi.org/10.1029/98JD00900
  22. Torres, O., Bhartia, P.K., Herman, J.R., Sinyuk, A., Ginoux, P., Holben, B. (2002) Along-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. Journal of Atmospheric Sciences 59, 398-413. https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2
  23. Von Hoyningen-Huene, W., Freitag, M., Burrows, J.B. (2003) Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. Journal of Geophysical Research 108, 4260-4279, doi:10.1029/2001JD002018. https://doi.org/10.1029/2001JD002018