Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus

  • Kim, Ji-Hye ;
  • Kang, Min-Jung ;
  • Choi, Ha-Neul ;
  • Jeong, Soo-Mi ;
  • Lee, Young-Min ;
  • Kim, Jung-In
  • Received : 2011.01.14
  • Accepted : 2011.02.14
  • Published : 2011.04.28


The objective of this study was to investigate the hypoglycemic effects of quercetin (QE) in animal models of diabetes mellitus (DM). A starch solution (1 g/kg) with and without QE (100 mg/kg) or acarbose (40 mg/kg) was orally administered to streptozotocin (STZ)-induced diabetic rats after an overnight fast. Postprandial plasma glucose levels were measured and incremental areas under the response curve were calculated. To study the effects of chronic feeding of QE, five-week-old db/db mice were fed an AIN-93G diet, a diet containing QE at 0.08%, or a diet containing acarbose at 0.03% for 7 weeks after 1 week of adaptation. Plasma glucose and insulin, blood glycated hemoglobin, and maltase activity of the small intestine were measured. Oral administration of QE (100 mg/kg) or acarbose (40 mg/kg) to STZ-treated rats significantly decreased incremental plasma glucose levels 30-180 min after a single oral dose of starch and the area under the postprandial glucose response, compared with the control group. QE (0.08% of diet) or acarbose (0.03% of diet) offered to db/db mice significantly reduced both plasma glucose and blood glycated hemoglobin compared to controls without significant influence on plasma insulin. Small intestine maltase activities were significantly reduced by consumption of QE or acarbose. Thus, QE could be effective in controlling fasting and postprandial blood glucose levels in animal models of DM.


Quercetin;glucose;glycated hemoglobin;postprandial hyperglycemia;db/db mouse


  1. Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2005;2:29.
  2. American Diabetes Association (ADA). Summary of revisions for the 2008 clinical practice recommendations. Diabetes Care 2008;31:S3-4.
  3. Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral hypoglycemic drugs: pathophysiological basis of their mechanism of action. Pharmaceuticals 2010;3:3005-20.
  4. Adewole SO, Caxton-Martins EA, Ojewole JAO. Protective effect of quercetin on the morphology of pancreatic ${\beta}-cells$ of streptozotocintreated diabetic rats. Afr J Tradit Complement Altern Med 2006;4:64-74.
  5. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and ${\beta]-cell$ damage in rat pancreas. Pharmacol Res 2005;51:117-23.
  6. Shetty AK, Rashmi R, Rajan MGR, Sambaiah K, Salimath PV. Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutr Res 2004;24:373-81.
  7. Ramachandra R, Shetty AK, Salimath PV. Quercetin alleviates activities of intestinal and renal disaccharidases in streptozotocininduced diabetic rats. Mol Nutr Food Res 2005;49:355-60.
  8. Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004;31:244-8.
  9. Ishikawa A, Yamashita H, Hiemori M, Inagaki E, Kimoto M, Okamoto M, Tsuji H, Memon AN, Mohammadi A, Natori Y. Characterization of inhibitors of postprandial hyperglycemia from the leaves of Nerium indicum. J Nutr Sci Vitaminol (Tokyo) 2007;53:166-73.
  10. Jo SH, Ka EH, Lee HS, Apostolidis E, Jang HD, Kwon YI. Comparison of antioxidant potential and rat intestinal ${\alpha]-glucosidases$inihibitory activities of quercetin, rutin, and isoquercetin. Int J Appl Res Nat Prod 2009;2:52-60.
  11. Standl E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab 1999;1:215-20.
  12. Abrahamson MJ. Optimal glycemic control in type 2 diabetes mellitus: Fasting and postprandial glucose in context. Arch Intern Med 2004;164:486-91.
  13. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on ${\alpha]-glucosidase$ activity and postprandial hyperglycemia. Nutrition 2005;21:756-61.
  14. Tsujita T, Takaku T. Mechanism of the inhibitory action of chestnut astringent skin extract on carbohydrate absorption. J Nutr Sci Vitaminol (Tokyo) 2008;54:416-21.
  15. Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Allah Verdi A, Mofidian SMA, Lame Rad B. Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem 2007;22:60-4.
  16. Lee SK, Hwang JY, Song JH, Jo JR, Kim MJ, Kim ME, Kim JI. Inhibitory activity of Euonymus alatus against alphaglucosidase in vitro and in vivo. Nutr Res Pract 2007;1:184-8.
  17. Raabo E, Terkildsen TC. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest 1960;12:402-7.
  18. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51.
  19. Schifreen RS, Hickingbotham JM, Bowers GN Jr. Accuracy, precision, and stability in measurement of hemoglobin $A_{1c}$ by "high-performance" cation-exchange chromatography. Clin Chem 1980;26:466-72.
  20. Morgan CR, Lazarow A. Immunoassay of insulin: two antibody system. Plasma insulin levels in normal, subdiabetic, and diabetic rats. Diabetes 1963;12:115-26.
  21. Dahlqvist A. Assay of intestinal disaccharidases. Scand J Clin Lab Invest 1984;44:169-72.
  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75.
  23. Madar Z. The effect of acarbose and miglitol (BAY-M-1099) on postprandial glucose levels following ingestion of various sources of starch by nondiabetic and streptozotocin-induced diabetic rats. J Nutr 1989;119:2023-29.
  24. Kang MJ, Kim JH, Choi HN, Kim MJ, Han JH, Lee JH, Kim JI. Hypoglycemic effects of Welsh onion in animal model of diabetes mellitus. Nutr Res Pract 2010;4:486-91.
  25. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 2005;54:1-7.
  26. Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H, Tanaka T, Maruyama M, Katahira H, Yoshimoto K, Itagaki E, Nagamatsu S. Pioglitazone improves insulin secretory capacity and prevents the loss of ${\beta]-cell$ mass in obese diabetic db/db mice: possible protection of ${\beta]$ cells from oxidative stress. Metabolism 2004;53:488-94.
  27. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007;125:451-72.
  28. Hummel KP, Coleman DL, Lane PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL/KsJ and C57BL/6J strains. Biochem Genet 1972;7:1-13.
  29. Dimitriadis GD, Tessari P, Go VLW, Gerich JE. ${\alpha]-Glucosidase$inhibition improves postprandial hyperglycemia and decreases insulin requirements in insulin-dependent diabetes mellitus. Metabolism 1985;34:261-5.
  30. Carrascosa JM, Molero JC, Fermin Y, Martinez C, Andres A, Satrustegui J. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes Metab 2001;3:240-8.
  31. Kannappan S, Anuradha CV. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin & metformin in a rat model. Indian J Med Res 2009;129:401-8.
  32. Juretic D, Bernik S, Cop L, Hadzija M, Petlevski R, Lukac-Bajalo J. Short-term effect of acarbose on specific intestinal disaccharidase activities and hyperglycaemia in CBA diabetic mice. J Anim Physiol Anim Nutr (Berl) 2003;87:263-8.
  33. Lee SM, Bustamante S, Flores C, Bezerra J, Goda T, Koldovský O. Chronic effects of an ${\alpha]-glucosidase$ inhibitor (Bay o 1248) on intestinal disaccharidase activity in normal and diabetic mice. J Pharmacol Exp Ther 1987;240:132-7.
  34. Liu L, Yu YL, Yang JS, Li Y, Liu YW, Liang Y, Liu XD, Xie L, Wang GJ. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. Naunyn Schmiedebergs Arch Pharmacol 2010;381:371-81.
  35. Bressler R, Johnson D. New pharmacological approaches to therapy of NIDDM. Diabetes Care 1992;15:792-805.
  36. Theoharides TC, Bielory L. Mast cells and mast cell mediators as targets of dietary supplements. Ann Allergy Asthma Immunol 2004;93:S24-34.

Cited by

  1. Effects of the hydroalcoholic extract of Phyllanthus niruri and its isolated compounds on cyclophosphamide-induced hemorrhagic cystitis in mouse vol.384, pp.3, 2011,
  2. A. Berger extracts in streptozotocin-induced diabetic rats vol.5, pp.4, 2011,
  3. Polyphenolic Extract Inhibits Hyperglycemia, Hyperlipidemia, and Glycation-Oxidative Stress while Improving Insulin Resistance vol.59, pp.18, 2011,
  4. Effect of quercetin on postprandial glucose excursion after mono- and disaccharides challenge in normal and diabetic rats vol.02, pp.01, 2012,
  5. Geriatric Obesity: Evaluating the Evidence for the Use of Flavonoids to Promote Weight Loss vol.31, pp.3, 2012,
  6. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice vol.6, pp.3, 2012,
  7. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males vol.13, pp.2, 2013,
  8. Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells vol.169, pp.5, 2013,
  9. -Cell Mass and Function in Fructose-Induced Hyperinsulinemia through Modulating Pancreatic Akt/FoxO1 Activation vol.2013, pp.1741-4288, 2013,
  10. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds vol.2013, pp.1741-4288, 2013,
  11. in Mice Fed a High-Fat Diet vol.2013, pp.1741-4288, 2013,
  12. Hypoglycemic and Hypolipidemic Effects of Orostachys japonicus with Medicinal Herbs in Streptozotocin-Induced Diabetic Rats vol.42, pp.4, 2013,
  13. Quercetin differently regulates insulin-mediated glucose transporter 4 translocation under basal and inflammatory conditions in adipocytes vol.58, pp.5, 2013,
  14. Improved Diabetic Nephropathy via Attenuating Renal Epithelial Mesenchymal Transition vol.61, pp.31, 2013,
  15. Potential Impact of Quercetin and Idebenone against Immuno- inflammatory and Oxidative Renal Damage Induced in Rats by Titanium Dioxide Nanoparticles Toxicity vol.62, pp.11, 2013,
  16. Lotus leaf alleviates hyperglycemia and dyslipidemia in animal model of diabetes mellitus vol.7, pp.3, 2013,
  17. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells vol.34, pp.4, 2014,
  18. Fructooligosaccharide augments benefits of quercetin-3-O-β-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats vol.53, pp.2, 2014,
  19. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1 vol.55, pp.3, 2014,
  20. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation vol.9, pp.1, 2014,
  21. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds vol.9, pp.4, 2014,
  22. Antidiabetic properties of dietary flavonoids: a cellular mechanism review vol.12, pp.1, 2015,
  23. Quercetin protects RAW264.7 macrophages from glucosamine-induced apoptosis and lipid accumulation via the endoplasmic reticulum stress pathway vol.12, pp.5, 2015,
  24. Protection of pancreatic β-cell function by dietary polyphenols vol.14, pp.6, 2015,
  25. Quercetin ameliorates insulin sensitivity and liver steatosis partly by increasing adiponectin expression in ob/ob mice vol.24, pp.1, 2015,
  26. Antidepressant‐like effects of quercetin in diabetic rats are independent of hypothalamic–pituitary–adrenal axis vol.28, pp.01, 2016,
  27. Investigation of the Acute Effects of Dry Extract of Glycine Max on Postprandial Glycemia in Rats vol.59, pp.0, 2016,
  28. Synergistic effect of quercetin and 6-gingerol treatment in streptozotocin induced type 2 diabetic rats and poloxamer P-407 induced hyperlipidemia vol.6, pp.15, 2016,
  29. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue vol.7, pp.3, 2016,
  30. Carbohydrate and Phytochemical Digestibility in Pasta vol.8, pp.1, 2016,
  31. Cardiovascular disease risk reduction in diabetes through conventional and natural approaches vol.6, pp.4, 2017,
  32. Unfolding Novel Mechanisms of Polyphenol Flavonoids for Better Glycaemic Control: Targeting Pancreatic Islet Amyloid Polypeptide (IAPP) vol.9, pp.7, 2017,
  33. Incorporation of whole blue maize flour increases antioxidant capacity and reduces in vitro starch digestibility of gluten-free pasta pp.00389056, 2017,
  34. In Vivo Effects of Quercetin in Association with Moderate Exercise Training in Improving Streptozotocin-Induced Aortic Tissue Injuries vol.20, pp.12, 2015,
  35. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids vol.17, pp.4, 2016,
  36. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation vol.17, pp.6, 2016,
  37. Coadjuvants in the Diabetic Complications: Nutraceuticals and Drugs with Pleiotropic Effects vol.17, pp.8, 2016,
  38. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds vol.18, pp.2, 2017,
  39. L.) extract in streptozotocin-induced diabetic rats vol.196, pp.1755-1315, 2018,
  40. Health promoting properties of blueberries: a review pp.1549-7852, 2018,
  41. Oral formulation of DPP-4 inhibitor plus Quercetin improves metabolic homeostasis in type 1 diabetic rats vol.8, pp.1, 2018,
  42. Effects of Quercetin on Lipid and Protein Damage in the Liver of Streptozotocin-Induced Experimental Diabetic Rats pp.1557-7600, 2018,
  43. residue extracts alleviates impaired glucose regulation in mice pp.01458884, 2018,
  44. Influence of 4-week intraduodenal supplementation of quercetin on performance, glucose metabolism, and mRNA abundance of genes related to glucose metabolism and antioxidative status in dairy cows vol.96, pp.11, 2013,
  45. improves postprandial hyperglycemia in diabetic mice through α-glucosidase inhibition pp.0951418X, 2019,


Supported by : National Research Foundation of Korea (NRF)