Isolation, Identification, and Characterization of Ornithine-Producing Enterococcus faecalis OA18 from Kefir Grain

케피어그레인으로 제조한 요쿠르트로부터 Enterococcus faecalis OA18 균주의 분리 및 특성규명

  • Yu, Jin-Ju (Department of Biotechnology, Woosuk University Graduate School) ;
  • Kim, Su-Gon (Department of Biotechnology, Woosuk University Graduate School) ;
  • Seo, Kyoung-Won (Department of Biotechnology, Woosuk University Graduate School) ;
  • Oh, Suk-Heung (Department of Biotechnology, Woosuk University Graduate School)
  • 유진주 (우석대학교 대학원 생명공학과) ;
  • 김수곤 (우석대학교 대학원 생명공학과) ;
  • 서경원 (우석대학교 대학원 생명공학과) ;
  • 오석흥 (우석대학교 대학원 생명공학과)
  • Received : 2011.07.26
  • Accepted : 2011.09.14
  • Published : 2011.09.30

Abstract

Lactic acid bacteria (LAB) OA18 was isolated from yogurt prepared by using Kefir Grain as a starter. The OA18 strain was a Gram-positive, cocci-type bacterium, and able to grow anaerobically with $CO_2$ production. The OA18 strain grew well on MRS broth supplemented with 50 mM arginine at $30-37^{\circ}C$ and pH of 7.0-9.0. The optimum temperature and pH for growth are $37^{\circ}C$ and pH 7.0. The isolate fermented ribose, D-glucose, cellobiose, D-trehalose, but not L-xylose, D-melibiose, and inositol. The 16S rRNA gene sequence of the isolate showed 99.8% homology with the Enterococcus faecalis 16S rRNA gene (Access no. AB012212). Based on the biochemical characteristics and 16S rRNA gene sequence analysis data, it was identified and named as E. faecalis OA18. The E. faecalis OA18 strain showed a high ornithine-producing capacity in the presence of arginine and also showed an antimicrobial activity against Streptomyces strains such as Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus. The cell growth of E. faecalis OA18 strain was maintained in MRS broth with a NaCl concentration of 0-7%.

Keywords

E. faecalis;anti-microbial activity;Kefir grain;ornithine

Acknowledgement

Supported by : 우석대학교

References

  1. Arena, M.E., F.M. Saguir, M.C. Manca, and M. Nadra. 1999. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Int'l. J. Food Microbiol. 52, 155-161. https://doi.org/10.1016/S0168-1605(99)00133-6
  2. Baum, G., L.Y. Simcha, Y. Fridmann, T. Arazi, H. Katsnelson, and M. Zik. 1996. Calmodulin binding to glutamate decarboxylase is required for regulation and GABA metabolism and normal development in plants. EMBO J. 15, 2988-2996.
  3. Behr, J., M.G. Ganzle, and R.F. Vogel. 2006. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl. Environ. Microbiol. 72, 6483-6492. https://doi.org/10.1128/AEM.00668-06
  4. Davidson, P.M. and M.E. Parish. 1989. Method for testing the efficacy of food antimicrobials. Food Technol. 43, 148-155.
  5. Demain, A.L. 1988. Contribution of genetics to the production and discovery of microbial pharmaceuticals. Pure Appl. Chem. 60, 833-836. https://doi.org/10.1351/pac198860060833
  6. Du Toit, M., C.M. Franz, L.M. Dicks, and W.H. Holzapfel. 2000. Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88, 482-494. https://doi.org/10.1046/j.1365-2672.2000.00986.x
  7. Eguchi, T., K. Kaminaka, J. Shima, S. Kawamoto, K. Mori, S.H. Choi, K. Doi, S. Ohmomo, and S. Ogata. 2001. Isolation and characterization of enterocin SE-K4 produced by thermophilic enterococci, Enterococcus faecalis K-4. Biosci. Biotechnol. Biochem. 65, 247-253. https://doi.org/10.1271/bbb.65.247
  8. Evain-Brion, D., M. Donnadieu, M. Roger, and J. Job. 1982. Simultaneous study of somatotrophic and corticotrophic pituitary secretions during ornithine infusion test. Clin. Endocrinol. 17, 119-122. https://doi.org/10.1111/j.1365-2265.1982.tb01571.x
  9. Garrote, G.L., A.G. Abraham, and G.L. De Antoni. 1998. Characteristics of kefir prepared with different grain: milk ratios. J. Dairy Res. 65, 149-154. https://doi.org/10.1017/S0022029997002677
  10. Gilmore, M.S., D.B. Clewell, P. Courvalin, G.M. Dunny, B.E. Murray, and L.B. Rice. 2002. Nonhuman reservoirs of Enterococci, pp. 56-100. In M.S. Gilmore (ed.), The Enterococci: pathogenesis, molecular biology, and antibiotic resistance, American Society for Microbiology Press, Washington, DC, USA.
  11. Jang, S.H. 2011. Control of Listeria monocytogenes on smoked salmon by antimicrobial effect of lactic acid bacteria. Food Industry Nutr. 16, 1-4.
  12. Jeevanandam, M., N.I. Holaday, and S.R. Petersen. 1996. Ornithine $\alpha$-ketoglutarate (OKG) supplementation is more effective than its component salts in traumatized rats. J. Nutrition 126, 2141-2150.
  13. Jeong, K.H., J.H. Choi, J.M. Lee, J.H. Lee, S.Y. Jang, and Y.J. Jeong. 2002. Fermentation characteristic of kefir beverage added fruit juice. Food Ind. Nutrition 7, 35-38.
  14. Kandler, O. and P. Kunath. 1983. Lactobacillus kefir sp., component of microflora of kefir. Syst. Appl. Microbiol. 4, 286-294. https://doi.org/10.1016/S0723-2020(83)80057-5
  15. Kemp, N. 1984. Kefir, the champagne of cultured dairy products. Cultured Dairy Products J. 19, 29-30.
  16. Kim, M.J. 2010. Preparation and characterization of kimchi using lactic acid bacteria having GABA and ornithine producing capacity and its some functional properties. MS thesis, Chonbuk Nat'l. Univ., Jeonju.
  17. Kim, J.Y., J.A. Lee, K.L. Kim, W.J. Yoon, W.J. Lee, and S.Y. Park. 2007. Antioxidative and antimicrobial activities of Sargassum muticum extracts. J. Korean Soc. Food Sci. Nutr. 36, 663-669. https://doi.org/10.3746/jkfn.2007.36.6.663
  18. Kim, D.S., S.K. Park, H.S. Kwak, and K.W. Lee. 1994. Isolation, identification and characterization of lactose non-fermenting yeast from kefir cultures. Korean J. Food Sci. Resour. 14, 175-178.
  19. Lee, J.S., K.C. Lee, J.S. Ahn, T.I. Mheen, Y.R. Byun, and Y.H. Park. 2002. Weissella. koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52, 1257-1261. https://doi.org/10.1099/ijs.0.02074-0
  20. Lim, S.M. 2005. Synergistic effect of physico-chemical treatment and bacteriocin produced by Enterococcus faecium MJ-14. J. Fd. Hyg. Safety 20, 217-224.
  21. Lim, Y.S., S.Y. Kim, and S.K. Lee. 2008. Characteristics of lactic acid bacteria isolated from kefir made of goat milk. Korean J. Food Sci. Ani. Resour. 28, 82-90. https://doi.org/10.5851/kosfa.2008.28.1.82
  22. Liu, S.Q., R. Holland, and V.L. Crow. 2003. The potential of dairy lactic acid bacteria to metabolise amino acids via non-transaminating reactions and endogenous transamination. Int. J. Food Microbiol. 86, 257-269. https://doi.org/10.1016/S0168-1605(03)00040-0
  23. Muting, D. and J.F. Kalk. 1992. Long-term effectiveness of highdosed ornithine-aspartate on urea synthesis rate and portal hypertension in human liver cirrhosis. Amino Acids 3, 147-153. https://doi.org/10.1007/BF00806780
  24. Nam, H.R., M.S. Ha, E.J. Lee, and Y.H. Lee. 2002. Effect of Enterococcus faecalis strain PL9003 on adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 12, 746-752.
  25. Park, K.B. and S.H. Oh. 2006. Isolation and characterization of Lactobacillus buchneri strains with high $\gamma-aminobutyric $ acid producing capacity from naturally aged cheese. Food Sci. Biotechnol. 15, 86-90.
  26. Sabia, C., S. Niederhausern, P. Messi, G. Manicardi, and M. Bondi. 2003. Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages ("cacciatore"). Int. J. Food Microbiol. 87, 173-179. https://doi.org/10.1016/S0168-1605(03)00043-6
  27. Sharpe, M.E., T.F. Fryer, and D.G. Smith. 1996. Identification of lactic acid bacteria, pp. 65-79. In B.M. Gibbs and F.A. Skinner (eds.). Identification Methods for Microbiologists: part A. Academic Press, Inc., New York, USA.
  28. Shi, H.P., R.S. Fishel, D.T. Efron, J.Z. Williams, M.H. Fishel, and A. Barbul. 2002. Effect of supplemental ornithine on wound healing. J. Surgical Res. 106, 299-302. https://doi.org/10.1006/jsre.2002.6471
  29. Uchisawa, H., A. Sato, J. Ichita, H. Matsue, and T. Ono. 2004. Influence of low-temperature processing of the brackish water bivalve, Corbicula japonica, on the ornithine content of its extract. Biosci. Biotechnol. Biochem. 68, 1228-1234. https://doi.org/10.1271/bbb.68.1228
  30. Wolpert, M., B. Gust, B. Kammerer, and L. Heide. 2007. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology 153, 1413-1423. https://doi.org/10.1099/mic.0.2006/002998-0
  31. Yu, J.J. and S.H. Oh. 2010. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt. J. Microbiol. 48, 467-472. https://doi.org/10.1007/s12275-010-0204-9
  32. Yu, J.J., H.J. Park, S.G. Kim, and S.H. Oh. 2009. Isolation, identification, and characterization of Weissella strains with high ornithine producing capacity from kimchi. Korean J. Microbiol. 45, 339-345.