Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase

C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구

  • Lee, Chang-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 이창호 (단국대학교 자연과학부 나노센서 바이오텍 연구소 분자생물학과) ;
  • 이성욱 (단국대학교 자연과학부 나노센서 바이오텍 연구소 분자생물학과)
  • Received : 2011.09.05
  • Accepted : 2011.09.20
  • Published : 2011.09.30


As a specific and effective therapeutic genetic material against hepatitis C virus (HCV) multiplication, HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was constructed. The allosteric ribozyme was composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nucleotide of HCV IRES. With real-time PCR analysis, the ribozyme was found to efficiently inhibit HCV replicon replication in cells. Of note, the allosteric ribozyme was shown to inhibit HCV replicon replication more efficiently than either HCV genome-targeting ribozyme or NS5B aptamer only. This allosteric ribozyme can be used as a lead genetic agent for the specific and effective suppression of HCV replication.


Supported by : 한국학술진흥재단


  1. Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. Virol. 69, 6367-6375.
  2. Biroccio, A., J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76, 3688-3696.
  3. Breaker, R.R. 2002. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31-39.
  4. Cheng, J.C., M.F. Chang, and S.C. Chang. 1999. Specific interaction between the Hepatitis C virus NS5B RNA polymerase and the 3' end of the viral RNA. J. Virol. 73, 7044-7049.
  5. Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362.
  6. Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. 1995. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J. Virol. 69, 2534-2539.
  7. Hanecak, R., V. Brown-Driver, M.C. Fox, R.F. Azad, S. Furusako, C. Nozaki, C. Ford, H. Sasmor, and K.P. Anderson. 1996. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J. Virol. 70, 5203-5212.
  8. Hartig, J.S., S.H. Najafi-Shoushtari, I. Grune, A. Yan, A.D. Ellington, and M. Famulok. 2002. Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20, 717-722.
  9. Hino, K., S. Sainokami, K. Shimoda, S. Iino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayumi. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. Virol, 42, 299-305.
  10. Honda, M., M.R. Beard, L.H. Ping, and S.M. Lemon. 1999. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J. Virol. 73, 1165-1174.
  11. Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290.
  12. Hwang, B., J.H. Lim, B. Hahm, S.K. Jang, and S.W. Lee. 2009. hnRNP L is required for the translation mediated by HCV IRES. Biochem. Biophys. Res. Commun. 37, 584-588.
  13. Johnson, R.B., X.L. Sun, M.A. Hockman, E.C. Villarreal, M. Wakulchik, and Q.M. Wang. 2000. Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase. Arch. Biochem. Biophys. 377, 129-134.
  14. Khaliq, S., S.A. Khaliq, M. Zahur, B. Ijaz, S. Jahan, M. Ansar, S. Riazuddin, and S. Hassan. 2010. RNAi as a new therapeutic strategy against HCV. Biotechnol. Adv. 28, 27-34.
  15. Krieger, N., V. Lohmann, and R. Bartenschlage. 2001. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 75, 4614-4624.
  16. Lauer, G.M. and B.D. Walker. 2001. Hepatitis C virus infection. New Engl. J. Med. 345, 41-52.
  17. Lee, C.H. and S.W. Lee. 2007. Development of hepatitis C virus (HCV) genome-targeting hammerhead ribozyme which activity can be allosterically regulated by HCV NS5B RNA replicase. Kor. J. Microbiol. 43, 159-165.
  18. Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. von Carlowitz, L. Bellon, M.J. Tong, A. Conrad, and et al. 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776.
  19. Moradpour, D., V. Brass, R. Gosert, B. Wolk, and H. Blum. 2002. Hepatitis C: molecular virology and antiviral targets. Trends Mol. Med. 8, 476-482.
  20. Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828.
  21. Paul, C.P., P.D. Good, A. Kleihauer, J.J. Rossi, and D.R. Engelke. 2003. Localized expression of small RNA inhibitors in human cells. Mol. Ther. 7, 237-247.
  22. Penin, F., J. Dubuisson, F.A. Rey, D. Moradpour, and J.M. Pawlotsky. 2004. Structural biology of hepatitis C virus. Hepatology 39, 5-19.
  23. Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395.
  24. Sakamoto, N., C.H. Wu, and G.Y. Wu. 1996. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J. Clin. Invest. 98, 2720-2728.
  25. Schlutter, J. 2011. Therapeutics: new drugs hit the target. Nature 474, S5-S7.
  26. Shin, K.S., J.H. Lim, J.H. Kim, H. Myung, and S.W. Lee. 2006. Inhibition of the replication of hepatitis C virus replicon with nuclease-resistant RNA aptamers. J. Microbiol. Biotechnol. 16, 1634-1639.
  27. Vaish, N.K., F. Dong, L. Andrews, R.E. Schweppe, N.G. Ahn, L. Blatt, and S.D. Seiwert. 2002. Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol. 20, 810-815.