DOI QR코드

DOI QR Code

Relationship of Somatic Cell Count and Mastitis: An Overview

  • Sharma, N. ;
  • Singh, N.K. ;
  • Bhadwal, M.S.
  • Received : 2010.06.27
  • Accepted : 2010.10.29
  • Published : 2011.03.01

Abstract

Mastitis is characterized by physical, chemical and bacteriological changes in the milk and pathological changes in the glandular tissue of the udder and affects the quality and quantity of milk. The bacterial contamination of milk from the affected cows render it unfit for human consumption and provides a mechanism of spread of diseases like tuberculosis, sore-throat, Q-fever, brucellosis, leptospirosis etc. and has zoonotic importance. Somatic cell count (SCC) is a useful predictor of intramammary infection (IMI) that includes leucocytes (75%) i.e. neutrophils, macrophages, lymphocytes, erythrocytes and epithelial cells (25%). Leucocytes increase in response to bacterial infection, tissue injury and stress. Somatic cells are protective for the animal body and fight infectious organisms. An elevated SCC in milk has a negative influence on the quality of raw milk. Subclinical mastitis is always related to low milk production, changes to milk consistency (density), reduced possibility of adequate milk processing, low protein and high risk for milk hygiene since it may even contain pathogenic organisms. This review collects and collates relevant publications on the subject.

Keywords

Mastitis;SCC;Factors;Management

References

  1. Barkema, H. W., Y. H. Schukken, T. J. G. M. Lam, M. L. Beiboer, G. Benedictus and A. Brand. 1999. Management practices associated with the incidence rate of clinical mastitis. J. Dairy Sci. 82:1643-1654. https://doi.org/10.3168/jds.S0022-0302(99)75393-2
  2. Beckley, M. S. and T. Johnson. 1966. Five year study of a California mastitis test on a commercial dairy herd. J. Dairy Sci. 49:746.
  3. Blackburn, P. S. 1966. The variation in cell count of cow's milk throughout lactation and from one lactation to the next. J. Dairy Res. 33:193-198. https://doi.org/10.1017/S0022029900011857
  4. Boyso, J. O., J. J. V. Alrcon, M. C. Juarez, A. O. Zarzosa, J. E. L. Meza, A. B. Patino and V. M. B. Aguirre. 2007. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 54:399-409. https://doi.org/10.1016/j.jinf.2006.06.010
  5. Bramley, A. J. 1992. Mastitis. In: Bovine Medicine - Diseases and Husbandry of Cattle (Ed. A. H. Andrews, R. W. Blowey, H. Boyd and R. G. Eddy). Blackwell Scientific Publications: Oxford, 289-300.
  6. Bytyqi, H., U. Zaugg, K. Sherifi, A. Hamidi, M. Gjonbalaj, S. Muji and H. Mehmeti. 2010. Influence of management and physiological factors on somatic cell count in raw milk in Kosova. Veterinarski Archiv, 80(2):173-183.
  7. Craven. N. and M. R. Williams. 1985. Defences of the bovine mammary gland against infection and prospects for the enhancement. Vet. Immunol. Immunopathol. 10:71. https://doi.org/10.1016/0165-2427(85)90039-X
  8. Dairyman's Digest 2009. What you should know about somatic cells. Winter issue.
  9. Dohoo, I. R. and A. H. Meek. 1982. Somatic cell counts in bovine milk. Can. Vet. J. 23(4):119-125.
  10. Dohoo, I. R., A. H. Meek and S. W. Martin. 1984. Somatic cell counts in bovine milk: relationships to production and clinical episodes of mastitis. Can. J. Comp. Med. 48:130-135.
  11. Fernandes, A. M., A. F. Oliveira and C. G. Lima. 2007. Effects of somatic cell counts in milk on physical and chemical characteristics of yoghurt. Int. Dairy J. 17:111-115. https://doi.org/10.1016/j.idairyj.2006.02.005
  12. Gallin, J. I., I. M. Goldstein and R. Snyderman. 1992. Inflammation: Basic Principles and Clinical Correlates. 2nd ed. Raven Press. New York, NY.
  13. Gonzalo, C., J. A. Baro, J. A. Carriedo and F. San Primitivo. 1993. Use of the Fossomatic method to determine somatic cell counts in sheep milk. J. Dairy Sci. 76:115-119. https://doi.org/10.3168/jds.S0022-0302(93)77330-0
  14. Gonzalo, C., J. R. Martinez, J. A. Carriedo and F. San Primitivo. 2003. Fossomatic cell-counting on ewe milk: comparison with direct microscopy and study of variation factors. J. Dairy Sci. 86:138-145. https://doi.org/10.3168/jds.S0022-0302(03)73593-0
  15. Hallen Sandgren, C., K. Persson Waller and U. Emanuelson. 2008. Therapeutic effects of systemic or intramammary antimicrobial treatment of bovine subclinical mastitis during lactation. Vet. J. 175:108-117. https://doi.org/10.1016/j.tvjl.2006.12.005
  16. Harmon, R. J. 1994. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 77:2103-2112. https://doi.org/10.3168/jds.S0022-0302(94)77153-8
  17. Harmon, R. J. 2001. Somatic cell counts: A primer. In: Proc. National Mastitis Council Annual Meeting. pp. 3-9.
  18. Hillerton, J. E. 1999. Redefining mastitis based on somatic cell count. IDF Bulletin 345:4-6.
  19. Hillerton, J. E., A. J. Bramley, R. T. Staker and C. H. McKinnon. 1995. Patterns of intramammary infection and clinical mastitis over a 5-year period in a closely monitored herd applying mastitis control measures. J. Dairy Res. 62:39-50. https://doi.org/10.1017/S0022029900033653
  20. Ingalls, W. 2001. Somatic cells: Function and relation to milk quality. December, 2001. http://www.milkproduction.com/Library/Articles/Somatic_Cells_Function_and_Relationship_to_Milk_Production.htm
  21. International Dairy Federation. 1997. Recommendations for presenting of mastitis related data. IDF Bulletin 321. Brussels, Belgium. pp. 7-25.
  22. International Dairy Federation. 1999. Suggested interpretation of mastitis terminology. IDF Bulletin 338. Brussels, Belgium. pp. 3-26.
  23. Jensen, D. L. and R. J. Eberhart. 1981. Total and differential cell counts in secretions of the nonlactating bovine mammary gland. Am. J. Vet. Res. 42(5):743-747.
  24. Khate, K. and B. R. Yadav. 2010. Incidence of mastitis in Sahiwal cattle and Murrah buffaloes of a closed organized herd. Indian J. Anim. Sci. 80(5):467-469.
  25. Lam, T. J. G. M., J. H. Van Vliet, Y. H. Schukken, F. J. Grommers, A. Van Velden-Russcher, H. W. Barkema and A. Brand. 1997b. The effect of discontinuation of postmilking teat disinfection in low somatic cell count herds. II. Dynamics of intramammary infections. Vet. Quart. 19:47-53.
  26. Lee, C. S., F. B. P. Wooding and P. Kemp. 1980. Identification properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J. Dairy Res. 47:39. https://doi.org/10.1017/S0022029900020860
  27. Ma, Y., C. Ryan, D. M. Barbano, D. M. Galton, M. A. Rudan and K. J. Boor. 2000. Effects of somatic cell count on quality and shelf life of pasteurized fluid milk. J. Dairy Sci. 83:264-274. https://doi.org/10.3168/jds.S0022-0302(00)74873-9
  28. Malinowski, E., H. Lassa, A. Kłossowska, H. Markiewicz, M. Kaczmarowski and S. Smulski. 2006. Relationship between mastitis agents and somatic cell count in foremilk samples. Bull. Vet. Inst. Pulawy. 50:349-352.
  29. McDonald, J. S. and A. J. Anderson. 1981. Total and differential somatic cell counts in secretions from noninfected bovine mammary glands; the peripartum period. Am. J. Vet. Res. 42:1366-1368.
  30. Meek, A. H., D. A. Barnum and F. H. S. Newbould. 1980. Use of total and differential somatic cell counts to differentiate potentially infected from potentially non-infected quarters and cows and between herds of various levels of infection. J. Food Prot. 43:10-14.
  31. Miller, R. H. and M. J. Paape. 1985. Relationship between milk somatic cell count and milk yield. In: Proc. Ann. Mtg. Natl. Mastitis Counc. p. 60.
  32. Miller, R. H., M. J. Paape, R. R. Peters and M. D. Young, 1990. Total and differential cell counts and N-Acetyl-${\beta}$-Dglucosaminidase activity in mammary secretions during dry period. J. Dairy Sci. 73(7):1751-1755. https://doi.org/10.3168/jds.S0022-0302(90)78852-2
  33. Mullan, N. A., E. A. Carter and K. A. Nguyen. 1985. Phagocytic and bactericidal properties of bovine macrophages from non-lactating mammary glands. Res. Vet. Sci. 38:160-166.
  34. National Mastitis Council. 2001. National mastitis council recommended mastitis control.
  35. Nickerson, S. C. 2009. Control of heifer mastitis: Antimicrobial treatment- An overview. Vet. Microbiol. 134:128-135. https://doi.org/10.1016/j.vetmic.2008.09.019
  36. Nonnccke, B. J. and J. A. Harp. 1986. Effect of chronic staphylococcal mastitis on mitogenic responses of bovine lymphocytes. J. Dairy Sci. 68:3323.
  37. Oliver, S. P., B. M. Jayarao and R. A. Almeida. 2005. Foodborne pathogens, mastitis, milk quality, and dairy food safety. Proc. 44th NMC Annual Meeting. Orlando, FL, pp. 3-27.
  38. Opdebeeck, J. P. 1982. Mammary gland immunity. J. Am. Vet. Med. Assoc. 181:1061-1065.
  39. Park, Y. H., L. K. Fox, M. J. Hamilton and W. C. Davis. 1992. Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J. Dairy Sci. 75(4):998-1006. https://doi.org/10.3168/jds.S0022-0302(92)77842-4
  40. Reichmuth, J. 1975. Somatic cell counting - interpretation of results. In Proc. of Sem. on Mast. Cont., 1975 IDF Doc. 85. pp. 93-109.
  41. Sharma, N. 2007. Alternative approach to control intramammary infection in dairy cows- A review. Asian J. Anim. Vet. Adv. 2(2):50-62. https://doi.org/10.3923/ajava.2007.50.62
  42. Rogers, G. W., G. Banos, U. Sander Nielsen and J. Philipsson. 1998. Genetic correlations among somatic cell scores, productive life, and type traits from the United States and udder health measures from Denmark and Sweden. J. Dairy Sci. 81:1445-1453. https://doi.org/10.3168/jds.S0022-0302(98)75708-X
  43. Schallibaum, M. 2001. Impact of SCC on the quality of fluid milk and cheese. National Mastitis Council, Inc. 40th Annual Meeting Proceedings. 38-46.
  44. Schalm, O. W., E. J. Carroll and N. C. Jain. 1971. Bovine Mmstitis. Lea & Febiger, Philadelphia, USA.
  45. Schepers, A. J., T. J. Lam, Y. H. Schukken, J. B. M. Wilmink and W. J. A. Hanekamp. 1997. Estimation of variance components for somatic cell counts to determine thresholds for uninfected quarters. J. Dairy Sci. 80:1833-1840. https://doi.org/10.3168/jds.S0022-0302(97)76118-6
  46. Sharif, A., M. Umer and G. Muhammad. 2009. Mastitis control in dairy production. J. Agric. Soc. Sci. 5:102-105.
  47. Sharma, N. and S. K. Maiti. 2005. Effect of dietary supplementation of vitamin E and selenium in sub clinical mastitis in dairy cows. Indian J. Vet. Med. 25(2):76-79.
  48. Sharma, N. and S. K. Maiti. 2009. Incidence, etiology and antibiogram of sub clinical mastitis in cows in Durg, Chhattisgarh. Indian J. Vet. Res. (In press).
  49. Sharma, N. 2003. Epidemiological investigation on subclinical mastitis in dairy animals: Role of vitamin E and selenium supplementation on its control. MVSc. Thesis, I.G.K.V.V., Raipur (C.G.) India.
  50. Sharma, N. 2008. Foot and mouth disease - Mastitis cascade in dairy cattle: A field study. Int. J. Zoolog. Res. 4(1):64-67. https://doi.org/10.3923/ijzr.2008.64.67
  51. Sharma, N., A. Gautam, S. R. Upadhyay, K. Hussain, J. S. Soodan and S. K. Gupta. 2006. Role of antioxidants in udder health: a review. Indian J. Field Vet. 2(1):73-76.
  52. Sharma, N., S. K. Gupta, U. Sharma and K. Hussai. 2007. Treatment of clinical mastitis in buffalo-A case report. Buffalo Bull. 26(2):56-58.
  53. Sharma, N., S. K. Maiti and K. M. Koley. 2004. Studies on the incidence of sub clinical mastitis in buffaloes of Rajnandgaon district of Chhattisgarh state. Vet. Pract. 5(2):123-124.
  54. Sharma, N., S. K. Maiti and K. K. Sharma. 2007. Prevalence, etiology and antibiogram of microorganisms associated with Sub-clinical mastitis in buffaloes in Durg, Chhattisgarh State (India). Int. J. Dairy Sci. 2(2):145-151. https://doi.org/10.3923/ijds.2007.145.151
  55. Sharma, S. D. and P. Rai. 1977. Studies on the incidence of bovine mastitis in Uttar Pradesh. II. Subclinical mastitis. Indian Vet. J. 54(6):435-439.
  56. Sheldrake, R. F., R. J. T. Hoare and G. D. McGregor. 1983. Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J. Dairy Sci. 66:542-547. https://doi.org/10.3168/jds.S0022-0302(83)81823-2
  57. Shook, G. E. 1993. Genetic improvement of mastitis through selection on somatic cell count. Vet. Clin. North Am., Food Anim. Pract. 9:563-581.
  58. Singh, M. 2002. Somatic cell counts during lactation in bovines as a index of subclinical mastitis. In: Proc. All India dairy husbandry officers workshop NDRI, Karnal, 2002. pp. 64-77.
  59. Skrzypek, R., J. Wojtowski and R. D. Fahr. 2004. Factors affecting somatic cell count in cow bulk tank milk: A case study from Poland. J. Vet. Med. A. 51:127-131. https://doi.org/10.1111/j.1439-0442.2004.00611.x
  60. Smith, K. L., D. A. Todhunter and P. S. Schoenberger. 1985. Environmental mastitis: cause, prevalence, prevention. J. Dairy Sci. 68:1531. https://doi.org/10.3168/jds.S0022-0302(85)80993-0
  61. Stabel, J. R. 2005. Paratuberculosis and Crohn's disease. In: Proc. 44th NMC Annual Meeting. Orlando, FL, pp. 36-40.
  62. Tamime, A. Y. and R. Robinson. 1999. Yoghurt science and technology. 2nd ed. Woodhead Publishing Ltd., Cambridge, UK.
  63. Topel, A. 2004. Chemie und physik der milch. Behr's Verlag GmbH & Co. KG, Hamburg DE, 756, pp. 369-434.
  64. White, F. and E. A. S. Rattray. 1965. Diurnal variation in the cell content of cow's milk. J. Comp. Pathol. 75:253. https://doi.org/10.1016/0021-9975(65)90029-0

Cited by

  1. Quantification of cow’s milk percentage in dairy products – a myth? vol.403, pp.10, 2012, https://doi.org/10.1007/s00216-012-5805-1
  2. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk vol.2, pp.4, 2013, https://doi.org/10.1038/cti.2013.1
  3. Perspective of Membrane Technology in Dairy Industry: A Review vol.26, pp.9, 2013, https://doi.org/10.5713/ajas.2013.13082
  4. Status of bovine mastitis and associated risk factors in subtropical Jeju Island, South Korea vol.45, pp.8, 2013, https://doi.org/10.1007/s11250-013-0422-3
  5. Incidence of Subclinical Mastitis and Prevalence of Major Mastitis Pathogens in Organized Farms and Unorganized Sectors vol.53, pp.3, 2013, https://doi.org/10.1007/s12088-012-0336-1
  6. Effects of dairy husbandry practices and farm types on raw milk quality collected by different categories of dairy processors in the Peruvian Andes vol.46, pp.8, 2014, https://doi.org/10.1007/s11250-014-0658-6
  7. Isolation, Biochemical and Molecular Identification, and In-Vitro Antimicrobial Resistance Patterns of Bacteria Isolated from Bubaline Subclinical Mastitis in South India vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0142717
  8. Intravaginal Lactic Acid Bacteria Modulated Local and Systemic Immune Responses and Lowered the Incidence of Uterine Infections in Periparturient Dairy Cows vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0124167
  9. RETRACTED ARTICLE: Inhibition of Lipopolysaccharide (LPS)-Induced Inflammatory Responses by Selenium in Bovine Mammary Epithelial Cells in Primary Culture vol.38, pp.1, 2015, https://doi.org/10.1007/s10753-014-0017-9
  10. Single nucleotide polymorphisms in candidate genes and their relation with somatic cell scores in Argentinean dairy cattle vol.56, pp.4, 2015, https://doi.org/10.1007/s13353-015-0278-5
  11. Innate immunity and carbohydrate metabolism alterations precede occurrence of subclinical mastitis in transition dairy cows vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-015-0079-8
  12. in the milks of cows with subclinical mastitis vol.6, pp.4, 2015, https://doi.org/10.3920/BM2014.0077
  13. Association of milk components with intra-mammary inflammation in Jaffrabadi buffaloes vol.8, pp.8, 2015, https://doi.org/10.14202/vetworld.2015.989-993
  14. Development of an improved Streptococcus uberis experimental mastitis challenge model using different doses and strains in lactating dairy cows vol.82, pp.04, 2015, https://doi.org/10.1017/S0022029915000321
  15. Mediation analysis to estimate direct and indirect milk losses associated with bacterial load in bovine subclinical mammary infections vol.10, pp.08, 2016, https://doi.org/10.1017/S1751731116000227
  16. Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis vol.25, pp.2, 2016, https://doi.org/10.1007/s00580-015-2205-x
  17. New Rapid Method of DNA Isolation from Milk Somatic Cells vol.27, pp.2, 2016, https://doi.org/10.1080/10495398.2015.1116446
  18. Mastites em ruminantes no Brasil vol.36, pp.7, 2016, https://doi.org/10.1590/S0100-736X2016000700001
  19. A pathogen-specific approach towards udder health management in dairy herds: Using culture and somatic cell counts from routine herd investigations vol.83, pp.1, 2016, https://doi.org/10.4102/ojvr.v83i1.1146
  20. Relative gene expression of fatty acid synthesis genes at 60 days postpartum in bovine mammary epithelial cells of Surti and Jafarabadi buffaloes vol.10, pp.5, 2017, https://doi.org/10.14202/vetworld.2017.467-476
  21. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India vol.10, pp.7, 2017, https://doi.org/10.14202/vetworld.2017.738-742
  22. Exogenous β-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle vol.100, pp.1, 2017, https://doi.org/10.3168/jds.2016-11017
  23. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis vol.100, pp.9, 2017, https://doi.org/10.3168/jds.2016-12446
  24. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177182
  25. Importance of bovine mastitis in Africa vol.18, pp.01, 2017, https://doi.org/10.1017/S1466252317000032
  26. A comparative study on selected APP, alkaline phosphatase and lactate dehydrogenase activities in buffalo and cow with subclinical mastitis vol.26, pp.3, 2017, https://doi.org/10.1007/s00580-017-2427-1
  27. Milk with different somatic cells counts and the physicochemical, microbiological characteristics and fatty acid profile of pasteurised milk cream: is there an association? vol.52, pp.12, 2017, https://doi.org/10.1111/ijfs.13550
  28. Prototheca zopfii Induced Ultrastructural Features Associated with Apoptosis in Bovine Mammary Epithelial Cells vol.7, pp.2235-2988, 2017, https://doi.org/10.3389/fcimb.2017.00299
  29. Comparison of cow-side diagnostic tests for subclinical mastitis of dairy cows in Musanze district, Rwanda vol.88, pp.0, 2017, https://doi.org/10.4102/jsava.v88i0.1464
  30. is associated with bacterial load pp.13443941, 2017, https://doi.org/10.1111/asj.12886
  31. Role of somatic cells on dairy processes and products: a review vol.94, pp.6, 2014, https://doi.org/10.1007/s13594-014-0176-3
  32. Immune Cell–Mediated Protection of the Mammary Gland and the Infant during Breastfeeding vol.6, pp.3, 2015, https://doi.org/10.3945/an.114.007377
  33. vol.7, pp.1, 2016, https://doi.org/10.3920/BM2015.0048
  34. as an Alternative of Antibiotics against Bovine Subclinical Mastitis pp.1532-2378, 2018, https://doi.org/10.1080/10495398.2018.1451752
  35. Prevalence and bacterial etiology of subclinical mastitis in goats reared in organized farms vol.11, pp.1, 2018, https://doi.org/10.14202/vetworld.2018.20-24
  36. Bacteriological survey of bulk tank milk from dairy farms in Montero, Santa Cruz, Bolivia vol.11, pp.10, 2018, https://doi.org/10.14202/vetworld.2018.1506-1509
  37. The influence of BoLA-DRB3 alleles on incidence of clinical mastitis, cystic ovary disease and milk traits in Holstein Friesian cattle vol.45, pp.5, 2018, https://doi.org/10.1007/s11033-018-4238-0
  38. Association of BoLA-DRB3 genotype with somatic cell count in milk of Polish Holstein cattle vol.47, pp.0, 2018, https://doi.org/10.1590/rbz4720150290
  39. Comparison between direct and indirect immunofluorescence method for determination of somatic cell count vol.72, pp.8, 2018, https://doi.org/10.1007/s11696-018-0445-3
  40. Tolerance to bovine clinical mastitis: Total, direct, and indirect milk losses vol.101, pp.4, 2018, https://doi.org/10.3168/jds.2017-13976
  41. The effect of subclinical mastitis on the concentration of immunoglobulins A, G, and M, total antioxidant capacity, zinc, iron, total proteins, and calcium in she-camel blood in relation with pathogens present in the udder vol.50, pp.6, 2018, https://doi.org/10.1007/s11250-018-1570-2
  42. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: highlighting the predictive power of lactose and electrical conductivity vol.85, pp.02, 2018, https://doi.org/10.1017/S0022029918000249
  43. Metabotypes with elevated protein and lipid catabolism and inflammation precede clinical mastitis in prepartal transition dairy cows vol.101, pp.6, 2018, https://doi.org/10.3168/jds.2017-13977
  44. Technical note: Selection of suitable reference genes for studying gene expression in milk somatic cell of yak (Bos grunniens) during the lactation cycle vol.97, pp.2, 2014, https://doi.org/10.3168/jds.2012-6437
  45. Intramammary administration of platelet concentrate as an unconventional therapy in bovine mastitis: First clinical application vol.97, pp.10, 2014, https://doi.org/10.3168/jds.2014-7999
  46. The Relationships between Somatic Cells and Isoleucine, Leucine and Tyrosine Content in Cow Milk vol.9, pp.2, 2019, https://doi.org/10.3390/app9020349