Effects of Cordyceps militaris Mycelia on Fibrolytic Enzyme Activities and Microbial Populations In vitro

  • Yeo, Joon-Mo ;
  • Lee, Shin-Ja ;
  • Shin, Sung-Hwan ;
  • Lee, Sung-Hoon ;
  • Ha, Jong-Kyu ;
  • Kim, Wan-Young ;
  • Lee, Sung-Sill
  • Received : 2009.02.02
  • Accepted : 2010.12.07
  • Published : 2011.03.01


An experiment was conducted to examine the effects of Cordyceps militaris mycelia on microbial populations and fibrolytic enzyme activities in vitro. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the supplementation of C. militaris mycelia linearly increased the number of total viable and celluloytic bacteria; maximum responses were seen with 0.25 g/L supplementation of C. militaris mycelia. The addition of C. militaris mycelia above the level of 0.20 g/L significantly (p<0.01) increased the number of total and cellulolytic bacteria compared with the control. On the other hand, the response of fungal counts to the supplementation of C. militaris mycelia showed a linear decrease; the lowest response was seen with 0.30 g/L supplementation of C. militaris mycelia. It would seem that C. militaris mycelia possess a strong negative effect on rumen fungi since the lowest level of C. militaris mycelia supplementation markedly decreased fungal counts. Carboxylmethyl cellulase activities were linearly increased by the addition of C. militaris mycelia except at 3 and 9 h incubation times. At all incubation times, the supplementation of C. militaris mycelia linearly increased the activities of xylanase and avicelase. In conclusion, the supplementation of C. militaris mycelia to the culture of mixed rumen microorganisms showed a positive effect on cellulolytic bacteria and cellulolytic enzyme activities but a negative effect on fungi.


Cordyceps militaris;Rumen Microorganisms;Enzyme


  1. Ahn, Y. J., S. J. Park, S. G. Lee, S. C. Shin and D. H. Choi. 2000. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp.. J. Agric. Food Chem. 48:2744-2748.
  2. Bernailier, A., G. Fonty, F. Bonnemoy and P. Gouet. 1993. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J. Gen. Microbiol. 139:873-880.
  3. Dehority, B. A., P. A. Tirabasso and A. P. Grifo Jr. 1989. Most probable number procedures for enumerating ruminal bacteria, including the simultaneous estimation of total and cellulolytic numbers in one medium. Appl. Environ. Microbiol. 55:2789-2792.
  4. Holdman, L. V., E. P. Gato and W. E. C. Moore. 1977. Anaerobic laboratory manual, 4th ed. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
  5. Hungate, R. E. 1966. The rumen bacteria. In: The rumen and its microbes (Ed. R. E. Hungate). Academic Press, New York and London, p. 8.
  6. Kneifel, H., W. A. Konig, W. Loeffler and R. Muller. 1977. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch. Microbiol. 113:121-130.
  7. Koh, J. H., H. J. Suh and T. S. Ahn. 2003. Hot-water extract from mycelia of Cordyceps sinensis as a substitute for antibiotic growth promoters. Biotechnol. Lett. 25:585-590.
  8. Koh, J. H., K. W. Yu, H. J. Suh, Y. M. Choi and T. S. Ahn. 2002. Activation of macrophages and the intestinal immune system by orally administered decoction from cultured mycelium of Cordyceps sinensis. Biosci. Biotechnol. Biochem. 66:407-411.
  9. Li, S. P., F. Q. Yang and K. W. K. Tsim. 2006. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharm. Biomed. Anal. 41:1571-1584.
  10. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  11. Miller, J. L., R. Blum, W. E. Glennon and A. L. Burton. 1960. Measurement of carboxymethyl cellulase activity. Anal. Biochem. 1:127-132.
  12. Nakamura, K., Y. Yamaguchi, S. Kagota, Y. M. Kwon, K. Shinozuka and M. Kunitomo. 1999. Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn. J. Pharmacol. 79:335-341.
  13. Oripin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Chapman and Hall, London, UK, pp. 140-195.
  14. SAS Institute, 1996. SAS User's Guide: Statistics. SAS Institute, Inc., Cary, NC, USA.
  15. Williams, P. E. V., C. J. Newbold, A. Walker and R. J. Wallace. 1990. Rumen probiotics: The effects of including yeast culture (Saccharomyces ceresisiae plus growth medium) in the diet for sheep fed continuously or in meal fed steers. J. Dairy Sci. 72 (Suppl. 1):521 (Abstract).
  16. Yeo, J. M., S. J. Lee, S. M. Lee, S. H. Shin, S. H. Lee, J. K. Ha, W. Y. Kim and S. S. Lee. 2009. Effects of Cordyceps militaris mycelia on in vitro rumen microbial fermentation. Asian-Aust. J. Anim. Sci. 22:201-205.
  17. Yeon, S. H., J. R. Kim and Y. J. Ahn. 2007. Comparison of growth-inhibiting activities of Cordyceps militaris and Paecilomyces japonica cultured on Bombyx mori pupae towards human gastrointestinal bacteria. J. Sci. Food Agric. 87:54-59.
  18. Yu, K. W., K. M. Kim and H. J. Suh. 2003. Pharmacological activities of stromata of Cordyceps scarabaecola. Phytother Res. 17:244-249.
  19. Yu, R., L. Song, Y. Shao, W. Bin, L. Wang, H. Shang, Y. Wo, W. Ye and X. Yao. 2004a. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 75:465-472.
  20. Yu, R., L. Wang, H. Zhang, C. Zhou and Y. Zhao. 2004b. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 75:662-666.

Cited by

  1. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats vol.96, pp.3, 2018,
  2. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions vol.97, pp.11, 2014,