DOI QR코드

DOI QR Code

An integrated bioinformatics analysis of mouse testis protein profiles with new understanding

  • Liu, Fujun (Shandong Research Centre for Stem Cell Engineering, Yu-Huang-Ding Hospital) ;
  • Wang, Haiyan (Shandong Research Centre for Stem Cell Engineering, Yu-Huang-Ding Hospital) ;
  • Li, Jianyuan (Shandong Research Centre for Stem Cell Engineering, Yu-Huang-Ding Hospital)
  • Received : 2010.12.29
  • Accepted : 2011.03.14
  • Published : 2011.05.31

Abstract

The testis is major male gonad responsible for spermatogenesis and steroidogenesis. Much knowledge is still remained to be learned about the control of these events. In this study, we performed a comprehensive bioinformatics analysis on 1,196 mouse testis proteins screened from public protein database. Integrated function and pathway analysis were performed through Database for Annotation, Visualization and Integrated Discovery (DAVID) and ingenuity Pathway Analysis (IPA), and significant features were clustered. Protein membrane organization and gene density on chromosomes were analyzed and discussed. The enriched bioinformatics analysis could provide clues and basis to the development of diagnostic markers and therapeutic targets for infertility and male contraception.

Keywords

Bioinformatics;Function;Mouse testis;Pathway;Proteome

References

  1. Dufau, M. L., Tsai-Morris, C., Tang, P. and Khanum, A. (2001) Regulation of steroidogenic enzymes and a novel testicular RNA helicase. J. Steroid. Biochem. Mol. Biol. 76, 187-197. https://doi.org/10.1016/S0960-0760(01)00051-6
  2. Walker, W. H. (2009) Molecular mechanisms of testosterone action in spermatogenesis. Steroids. 74, 602-607. https://doi.org/10.1016/j.steroids.2008.11.017
  3. Liu, F. J., Jin, S. H., Li, N., Liu, X., Wang, H. Y. and Li, J. Y. (2011) Comparative and functional analysis of testis- specific genes. Biol. Pharm. Bull. 34, 28-35. https://doi.org/10.1248/bpb.34.28
  4. Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476. https://doi.org/10.1038/nature07509
  5. Xu, Q., Modrek, B. and Lee, C. (2002) Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res. 30, 3754-3766. https://doi.org/10.1093/nar/gkf492
  6. Sikaroodi, M., Galachiantz, Y. and Baranova, A. Tumor markers: the potential of "omics" approach. Curr. Mol. Med. 10, 249-257.
  7. Guo, X., Shen, J., Xia, Z., Zhang, R., Zhang, P., Zhao, C., Xing, J., Chen, L., Chen, W., Lin, M., Huo, R., Su, B., Zhou, Z. and Sha, J. (2010) Proteomic analysis of proteins involved in spermiogenesis in mouse. J. Proteome. Res. 9,1246-1256. https://doi.org/10.1021/pr900735k
  8. Huang, S. Y., Lin, J. H., Chen, Y. H., Chuang, C. K., Lin, E. C., Huang, M. C., Sunny Sun, H. F. and Lee, W. C. (2005) A reference map and identification of porcine testis proteins using 2-DE and MS. Proteomics. 5, 4205-4212. https://doi.org/10.1002/pmic.200401284
  9. Zhu, Y. F., Cui, Y. G., Guo, X. J., Wang, L., Bi, Y., Hu, Y. Q., Zhao, X., Liu, Q., Huo, R., Lin, M., Zhou, Z. M. and Sha, J. H. (2006) Proteomic analysis of effect of hyperthermia on spermatogenesis in adult male mice. J. Proteome. Res. 5, 2217-2225. https://doi.org/10.1021/pr0600733
  10. Guo, X., Zhao, C., Wang, F., Zhu, Y., Cui, Y., Zhou, Z., Huo, R. and Sha J. (2010) Investigation of human testis protein heterogeneity using 2-dimensional electrophoresis. J. Androl. 31, 419-429. https://doi.org/10.2164/jandrol.109.007534
  11. Cui, Y., Zhu, H., Zhu, Y., Guo, X., Huo, R., Wang, X., Tong, J., Qian, L., Zhou, Z., Jia, Y., Lue, Y. H., Hikim, A. S., Wang, C., Swerdloff, R. S. and Sha, J. (2008) Proteomic analysis of testis biopsies in men treated with injectable testosterone undecanoate alone or in combination with oral levonorgestrel as potential male contraceptive. J. Proteome. Res. 7, 3984-3993. https://doi.org/10.1021/pr800259t
  12. Albrecht, M. (2009) Insights into the nature of human testicular peritubular cells. Ann Anat. 191, 532-540. https://doi.org/10.1016/j.aanat.2009.08.002
  13. Shalet, S. M. (2009) Normal testicular function and spermatogenesis. Pediatr. Blood Cancer. 53, 285-288. https://doi.org/10.1002/pbc.22000
  14. Baker, M. A., Hetherington, L., Reeves, G. M. and Aitken, R. J. (2008) The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics. 8, 1720-1730. https://doi.org/10.1002/pmic.200701020
  15. Xiao, S. J., Zhang, C., Zou, Q. and Ji, Z. L. (2010) TiSGeD: a database for tissue-specific genes. Bioinformatics. 26, 1273-1275. https://doi.org/10.1093/bioinformatics/btq109
  16. Wagner, M. S., Wajner, S. M. and Maia, A. L. (2008) The role of thyroid hormone in testicular development and function. J. Endocrinol. 199, 351-365. https://doi.org/10.1677/JOE-08-0218
  17. Schlatt, S., Kim, S. S. and Gosden, R., (2002) Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction. 124, 339-346. https://doi.org/10.1530/rep.0.1240339
  18. Aitken, R. J. and Baker M. A. (2008) The role of proteomics in understanding sperm cell biology. Int. J. Androl. 31, 295-302. https://doi.org/10.1111/j.1365-2605.2007.00851.x
  19. Schneider, M., Tognolli, M. and Bairoch, A. (2004) The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. 42, 1013-1021. https://doi.org/10.1016/j.plaphy.2004.10.009
  20. Heng, H. H., Stevens, J. B., Bremer, S. W., Ye, K. J., Liu, G. and Ye C. J. (2010) The evolutionary mechanism of cancer. J. Cell Biochem. 109,1072-1084.
  21. Tres, L. L. and Kierszenbaum, A. L. (2005) The ADAM-integrin- tetraspanin complex in fetal and postnatal testicular cords. Birth Defects Res. C. Embryo Today. 75, 130-141. https://doi.org/10.1002/bdrc.20041
  22. Manning, G. (2005) Genomic overview of protein kinases. WormBook. 13, 1-19.
  23. Almog, T. and Naor, Z. (2010) The role of Mitogen activated protein kinase (MAPK) in sperm functions. Mol. Cell Endocrinol. 314, 239-243. https://doi.org/10.1016/j.mce.2009.05.009
  24. Tripathi, R., Mishra, D. P. and Shaha, C. (2009) Male germ cell development: turning on the apoptotic pathways. J. Reprod. Immunol. 83, 31-35. https://doi.org/10.1016/j.jri.2009.05.009
  25. Tanwar, P. S., Kaneko-Tarui, T., Zhang, L., Rani, P., Taketo, M. M. and Teixeira, J. (2010) Constitutive WNT/beta-catenin signaling in murine Sertoli cells disrupts their differentiation and ability to support spermatogenesis. Biol Reprod. 82, 422-432. https://doi.org/10.1095/biolreprod.109.079335
  26. Caballero, O. L. and Chen, Y. T. (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 100, 2014-2021. https://doi.org/10.1111/j.1349-7006.2009.01303.x
  27. Brantley, E. C., Nabors, L. B., Gillespie, G. Y., Choi, Y. H., Palmer, C. A., Harrison, K., Roarty, K. and Benveniste, E. N. (2008) Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin. Cancer Res. 14, 4694-4704. https://doi.org/10.1158/1078-0432.CCR-08-0618
  28. Selva, D. M. and Hammond, G. L. (2006) Human sex hormone- binding globulin is expressed in testicular germ cells and not in sertoli cells. Horm. Metab. Res. 38, 230- 235. https://doi.org/10.1055/s-2006-925336

Cited by

  1. The new understanding ofArabidopsis thalianaproteins associated with salinity vol.7, pp.4, 2012, https://doi.org/10.1080/17429145.2011.640438
  2. A Novel Testis-Specific Gene, Ccdc136, Is Required for Acrosome Formation and Fertilization in Mice vol.23, pp.10, 2016, https://doi.org/10.1177/1933719116641762
  3. Impact of glycosylation on the unimpaired functions of the sperm vol.42, pp.3, 2015, https://doi.org/10.5653/cerm.2015.42.3.77
  4. Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics vol.15, pp.5, 2013, https://doi.org/10.1038/aja.2013.67
  5. Exploring the Multifactorial Nature of Autism Through Computational Systems Biology: Calcium and the Rho GTPase RAC1 Under the Spotlight vol.15, pp.2, 2013, https://doi.org/10.1007/s12017-013-8224-3
  6. An in silico analysis of human sperm genes associated with asthenozoospermia and its implication in male infertility vol.97, pp.49, 2018, https://doi.org/10.1097/MD.0000000000013338