DOI QR코드

DOI QR Code

The stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotide cofactor and buffer pH

  • Ziemienowicz, Alicja (Department of Biological Sciences, University of Lethbridge) ;
  • Rahavi, Seyed Mohammad Reza (Department of Biological Sciences, University of Lethbridge) ;
  • Kovalchuk, Igor (Department of Biological Sciences, University of Lethbridge)
  • Received : 2010.10.11
  • Accepted : 2011.03.10
  • Published : 2011.05.31

Abstract

The single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of $CaCl_2$, NaCl and $NH_4NO_3$ salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA. The studies revealed that, in addition to the inhibitory effect, these salts exert also a stimulatory effect on RecA. These effects occur only under very strict conditions, and the presence or absence and the type of nucleotide cofactor play here a major role. It was observed that in contrast to ATP, ATP${\gamma}$S prevented the inhibitory effect of NaCl and $NH_4NO_3$, even at very high salt concentration. These results indicate that ATP${\gamma}$S most likely stabilizes the structure of RecA required for DNA binding, making it resistant to high salt concentrations.

Keywords

DNA-protein interaction;Homologous recombination;Mono-/divalent ion salts;RecA;Single-stranded DNA

References

  1. Sadler, S. J., Satin, L. H., Samara, H. S. and Clark, A. J. (1996) recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 24, 2125-2132. https://doi.org/10.1093/nar/24.11.2125
  2. Yang, S., Yu, X., Seitz, E. M., Kowalczykowski, S. C. and Egelman, E. H. (2001) Archaeal RadA protein binds DNA as both helical filaments and octameric rings. J. Mol. Biol. 314, 1077-1085. https://doi.org/10.1006/jmbi.2000.5213
  3. Sung, P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241-1243. https://doi.org/10.1126/science.8066464
  4. Ogawa, T., Yu, X., Shinohara, A. and Egelman, E. H. (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896-1899. https://doi.org/10.1126/science.8456314
  5. Sigurdsson, S., Trujillo, K., Song, B., Stratton, S. and Sung, P. (2001) Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J. Biol. Chem. 276, 8798-8806. https://doi.org/10.1074/jbc.M010011200
  6. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. and Egelman, E. H. (2001) Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. U.S.A. 98, 8419-8424. https://doi.org/10.1073/pnas.111005398
  7. Clark, A. J. and Margulies, A. D. (1965) Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. U.S.A. 53, 451-459. https://doi.org/10.1073/pnas.53.2.451
  8. Clark, A. J. (1973) Recombination deficient mutants of E. coli and other bacteria. Annu. Rev. Genet. 7, 67-86. https://doi.org/10.1146/annurev.ge.07.120173.000435
  9. Waker, G. C. (1985) Inducible DNA repair systems. Annu. Rev. Biochem. 54, 425-457. https://doi.org/10.1146/annurev.bi.54.070185.002233
  10. Clark, A. J. (1996) RecA mutants of E. coli K12: a personal turning point. Bioessays 18: 767-772. https://doi.org/10.1002/bies.950180912
  11. Roberts, J. W., Roberts, C. W., Craig, N. L. and Phizicky, E. M. (1978) Activity of the Escherichia coli recA-gene product. Cold Spring Harbor Symp. Quant. Biol. 43, 917- 920.
  12. Bianco, P. R., Tracy, T. B. and Kowalczykowski, S. C. (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Bioscie. 3, D570-D603. https://doi.org/10.2741/A304
  13. Taylor, A. F. and Smith, G. R. (1999) Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. Genes Dev. 13, 890- 900. https://doi.org/10.1101/gad.13.7.890
  14. McEntee, K., Weinstock, G. M. and Lehman, I. R. (1981) Binding of the recA protein of Escherichia coli to singleand double-stranded DNA. J. Biol. Chem. 256, 8835- 8844.
  15. Zaitseva, E. M., Zaitsev, E. N. and Kowalczykowski S. C. (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 274, 2907-2915. https://doi.org/10.1074/jbc.274.5.2907
  16. Bugreev, D. V. and Mazin, A. V. (2004) $Ca^{2+}$ activates human homolgous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 101, 9988-9993. https://doi.org/10.1073/pnas.0402105101
  17. Boyko, A., Hudson, D., Bhomkar, P., Kathiria, P. and Kovalchuk, I. (2006) Increase of homologous recombination frequency in vascular tissue of arabidopsis plants exposed to salt stress. Plant Cell Physiol. 47, 736-742. https://doi.org/10.1093/pcp/pcj045
  18. Boyko, A., Matsuoka, A. and Kovalchuk, I. (2009) High frequency Agrobacterium-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep. 28, 737- 757. https://doi.org/10.1007/s00299-009-0676-4
  19. Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., Hollander, J., Meins, F. Jr. and Kovalchuk, I. (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5, e9514. https://doi.org/10.1371/journal.pone.0009514
  20. Boyko, A., Golubov, A., Bilichak, A. and Kovalchuk, I. (2010) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol. 51, 1066-1078. https://doi.org/10.1093/pcp/pcq048
  21. Clark, J. B. (1953) The effects of chemicals on the recombination rate in Bacterium coli. J. Gen. Microbiol. 8, 45-49. https://doi.org/10.1099/00221287-8-1-45
  22. Holloman, W. K., Wiegand, R., Hoessli, C. and Radding, C. M. (1975) Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 72, 2394-2398. https://doi.org/10.1073/pnas.72.6.2394
  23. Esposito, D. and Gerard, G. F. (2003) The Escherichia coli Fis protein stimulates bacteriophage $\lambda$ integrative recombination in vitro. J. Bacteriol. 185, 3076-3080. https://doi.org/10.1128/JB.185.10.3076-3080.2003
  24. Liu, Y., Stasiak, A. Z., Masson, J. Y., McIlwairth, M. J., Stasiak, A. and West, S. C. (2004) Conformational changes modulate the activity of human RAD51 protein. J. Mol. Biol. 337, 817-827. https://doi.org/10.1016/j.jmb.2004.02.022
  25. Shim, K.-S., Schmutte, C., Yoder, K. and Fishel, R. (2006) Defining the salt effect on human RAD51 activity. DNA Repair 5, 718-730. https://doi.org/10.1016/j.dnarep.2006.03.006
  26. Menetski, J. P., Verghese, A. and Kowalczykowski, S. C. (1992) The physical and enzymatic properties of Escherichia coli recA protein display anion-specific inhibition. J. Biol. Chem. 267, 3226-3232.
  27. McEntee, K., Weinstock, G. M. and Lehman, I. R. (1981) DNA and nucleoside triphosphate binding properties of recA protein from Escherichia coli. Proc. Nucleic Acid Res. Mol. Biol. 26, 265-279. https://doi.org/10.1016/S0079-6603(08)60411-0
  28. Menetski, J. P., Verghese, A. and Kowalczykowski, S. C. (1988) Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein. Biochemistry 27, 1205-1212. https://doi.org/10.1021/bi00404a021
  29. Menge, K. L., and Bryant, F. R. (1988) ATP-stimulated hydrolysis of GTP by recA protein: kinetic consequences of cooperative recA protein-ATP interactions. Biochemistry 27, 2635-2640. https://doi.org/10.1021/bi00407a055
  30. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. and Rehrauer, W. M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401-464.
  31. Flory, J., Tsang, S. S. and Muniyappa, K. (1984) Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 81, 7026-7030. https://doi.org/10.1073/pnas.81.22.7026
  32. Chow, S. A. and Radding, C. M. (1985) Ionic inhibition of formation of RecA nucleoprotein networks blocks homologous pairing. Proc. Natl. Acad. Sci. U.S.A. 82, 5646- 5650. https://doi.org/10.1073/pnas.82.17.5646
  33. Shibata, T., DasGupta, C., Cunningham, R. P., Williams, J. G. K., Osber, L. and Radding, C. M. (1981) Homologous pairing in genetic recombination: The pairing reaction catalyzed by Escherichia coli recA protein. J. Biol. Chem. 256, 7565-7572.
  34. Roman, L. J., Dixon, D. A. and Kowalczykowski, S. C. (1991) RecBCD-dependent joint molecule formation promoted by the Escherichia coli RecA and SSB proteins. Proc. Natl., Acad. Sci. U.S.A. 88, 3367-3371. https://doi.org/10.1073/pnas.88.8.3367
  35. Cox, M. M. and Lehman, I. R. (1982) recA protein-pomoted DNA strand exchange. J. Biol. Chem. 257, 8523- 8532.
  36. Rould, E., Muniyappa, K. and Radding, C. M. (1992) Unwinding of heterologous DNA by RecA protein during the search for homologous sequences. J. Mol. Biol. 226, 127-139. https://doi.org/10.1016/0022-2836(92)90129-8
  37. Zaitsev, E. N. and Kowalczykowski, S. C. (1998) Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucleic Acids Res. 26, 650-654. https://doi.org/10.1093/nar/26.2.650
  38. Kowalczykowski, S. C., Burk, D. L. and Krupp, R. A. (1989) Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA412 protein. J. Mol. Biol. 207, 719-733. https://doi.org/10.1016/0022-2836(89)90239-8
  39. Ishimori, K., Sommer, S., Bailone, A., Takahashi, M., Cox, M. M. and Dovoret, R. (1996) Characterization of a mutant RecA protein that facilitates homologous genetic recombination but not recombinational DNA repair: RecA423. J. Mol. Biol. 264, 696-712. https://doi.org/10.1006/jmbi.1996.0670
  40. Tombline, G. and Fishel, R. (2002) Biochemical characterization of the human RAD51 protein. I. ATP hydrolysis. J. Biol. Chem. 277, 14417-14425. https://doi.org/10.1074/jbc.M109915200
  41. Greer, M. S., Kovalchuk, I. and Eudes, F. (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. N. Biotechnol. 26, 44-52. https://doi.org/10.1016/j.nbt.2009.02.003
  42. Yokoyama, H., Kurumizaka, H., Ikawa, S. and Shibata, T. (2003) Holliday junction binding activity of the human Rad51B protein. J. Biol. Chem. 278, 2767-2772. https://doi.org/10.1074/jbc.M210899200

Cited by

  1. DNA-modulated photo-transformation of AgCl to silver nanoparticles: visiting the formation mechanism vol.452, 2015, https://doi.org/10.1016/j.jcis.2015.04.033
  2. Combination of ammonium nitrate, cerium chloride and potassium chloride salts improves Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum vol.7, pp.2, 2013, https://doi.org/10.1007/s11816-012-0243-2
  3. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea vol.9, pp.2, 2015, https://doi.org/10.1038/ismej.2014.137