Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition

상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가

Baek, Chang-Woo;Han, Gui-fang;Hahn, Byung-Dong;Yoon, Woon-Ha;Choi, Jong-Jin;Park, Dong-Soo;Ryu, Jung-ho;Jeong, Dae-Yong

  • Received : 2011.02.28
  • Accepted : 2011.04.13
  • Published : 2011.05.27


Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.


$\underline{thermistor}$;$\underline{negative\temperature\coefficient\(NTC)}$;aerosol deposition;thick film


  1. S. Jagtap, S. Rane, S. Gosavi and D. Amalnerkar, J. Eur. Ceram. Soc., 28, 2501 (2008).
  2. S. A. Kanade and V. Puri, Mater. Lett., 60, 1428 (2006).
  3. R. Jadhav, D. Kulkarni and V. Puri, J. Mater. Sci. Mater. Electron., 21 (5), 503 (2010).
  4. K. Park and D. Bang, J. Mater. Sci. Mater. Electron., 14(2), 81 (2003).
  5. J. Huang, Y. Hao, H. Lin, D. Zhang, J. Song and D. Zhou, Mater. Sci. Eng. B, 99, 523 (2003).
  6. N. P. Prasanth, J. M. Varghese, K. Prasad, B. Krishnan, A. Seema and K. R. Dayas, J Mater. Sci. Mater. Electron., 19, 1100 (2008).
  7. M. Lee and M. Yoo, Sensor. Actuator. Phys., 96, 97 (2002).
  8. R. Schmidt, A. Basu and A. W. Brinkman, J. Eur. Ceram. Soc., 24, 1233 (2004).
  9. M. Yoo and M. Lee, Mater. Trans., 43(5), 1065 (2002).
  10. G. D. C. Csete de Gyorgyfalva and I. Reaney, J. Eur. Ceram. Soc., 21, 2145 (2001).
  11. A. Veres, J. G. Noudem, O. Perez, S. Fourrez and G. Bailleul, Solid State Ionics, 178, 423 (2007).
  12. S. M. Savic, M. V. Nikolic, O. S. Aleksic, M. Slankamenac, M. Zivanov and P. M. Nikolic, Science of Sintering, 40, 27 (2008).
  13. R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005).
  14. J. R. Yoon, J. G. Kim, J. Y. Kwon, H. Y. Lee and S. W. Lee, J. KIEEME, 13(6), 472 (2000).
  15. A. Kshirsagar, S. Rane, U. Mulik and D. Amalnerkar, Mater. Chem. Phys., 101, 492 (2007).
  16. H. Hosseini and B. Yasaei, Ceram. Int., 24, 543 (1998).
  17. M. -J. Lee, T. -Y. Lim, S. -K. Kim, J. Hwang, J. -H. Kim and W. -S. Seo, Kor. J. Mater. Res., 20(12), 654 (2010) (in Korean).
  18. J. Ryu, K. -Y. Kim, J. -J. Choi, B. -D. Hahn, W. -H. Yoon, B. -K. Lee, D. S. Park and C. Park, J. Am. Ceram. Soc., 92 (12), 3084 (2009).
  19. J. Ryu, D. -S. Park, B. -D. Hahn, J. -J. Choi, W. -H. Yoon, K. Y. Kim and H. -S. Yun, Appl. Catal. B Environ., 83, 1 (2008).
  20. B. -D. Hahn, D. -S. Park, J. -J. Choi, J. Ryu, W. -H. Yoon, J. -H. Choi, H. -E. Kim and S. -G. Kim, Surf. Coating. Tech., 205, 3112 (2011).