DOI QR코드

DOI QR Code

Electrochemical Method for Detecting Hippuric Acid Using Osmium-antigen Conjugate on the Gold Nanoparticles Modified Screen-printed Carbon Electrodes

  • Received : 2011.03.02
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

This paper describes an electrochemical immunoassay for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The electrochemical system of immunoassay was based on the directly osmium complex conjugated with hippuric acid. With the competition between free hippuric acid (HA) and the osmium-hippuric acid conjugate (Os-HA) to bind with antibody hippuric acid (Anti-HA) coated onto gold nanoparticles, the electrical signals were proportional to urinary hippuric acid (HA) in the range of 0.01-5 mg/mL which is enough range to be used for in-field or point-of-care (POC) diagnosis. The proposed electrochemical method can be extended to the applications to detect a wide range of different small molecules in the field of health care.

References

  1. J.W. Boor and H.I. Hutrig, Ann. Neurol., 2, 440 (1977). https://doi.org/10.1002/ana.410020518
  2. N.L. Rosenberg, M.C. Spitz, C.M. Filley, K.A. Davis and H.H Schaumburg, Neurotoxicol. Teratol., 10, 489 (1988). https://doi.org/10.1016/0892-0362(88)90014-1
  3. R.G. Feldman, M.H. Ratner and T. Ptak, Environmental Health Perspectives., 107, 417 (1999). https://doi.org/10.1289/ehp.99107417
  4. H.M. Park, S.H. Lee, H. Chung, O.H. Kwon, K.Y. Yoo, H.H. Kim, S.C. Heo, J.S. Park and G.S. Tae, J. Anal. Toxicol., 31, 347 (2007). https://doi.org/10.1093/jat/31.6.347
  5. P. Kongtip, J. Vararussami and V. Pruktharathikul, J. Chromatogr B Biomed Sci Appl., 751, 199 (2001). https://doi.org/10.1016/S0378-4347(00)00463-1
  6. K. Tomokuni and M. Ogata, Clin Chem., 18, 349 (1972).
  7. T. Sakai, Y. Niinuma, S. Yanagihara and K. Ushio, J. Chromatogr., 276, 182 (1983). https://doi.org/10.1016/S0378-4347(00)85080-X
  8. A.C. Lee, G. Liu, C.K. Heng, S.N. Tan, T.M. Lim and Y. Lin, Electroanalysis., 20, 2040 (2008). https://doi.org/10.1002/elan.200804287
  9. Y.Y. Lin, J. Wang, G. Liu, H. Wu, C.M. Wai and Y. Lin, Biosensor and Bioelectronics., 23, 1659 (2008). https://doi.org/10.1016/j.bios.2008.01.037
  10. S. Prabhulkar, S. Alwarappan, G. Liu and C.Z. Li, Biosensor and Bioelectronics., 24, 3524 (2009). https://doi.org/10.1016/j.bios.2009.05.002
  11. S.J. Yoo, Y.B. Choi, J. I. Ju, G. S. Tae, H. H. Kim and S. H. Lee, Analyst., 134, 2462 (2009). https://doi.org/10.1039/b915356j
  12. J. Wang, A. Ibanez, M.P. Chatrathi and A. Escarpa, Anal Chem., 73, 5323 (2001). https://doi.org/10.1021/ac010808h
  13. C. Duan and M.E. Meyerhoff, Anal Chem., 66, 1369 (1994). https://doi.org/10.1021/ac00081a003
  14. T.J. Moore, M.J. Joseph, B.W. Allen, L.A and Jr. Coury, Anal Chem., 67, 1896 (1995). https://doi.org/10.1021/ac00107a022
  15. J. Wang, B. Tian and K.R. Rogers, Anal Chem., 70, 1682 (1998). https://doi.org/10.1021/ac971298n
  16. T.K. Lim and T. Matsunaga, Biosens Bioelectron., 16, 1063 (2001). https://doi.org/10.1016/S0956-5663(01)00228-7
  17. T.K. Lim, S. Imai and T. Matsunaga, Biotechnol Bioeng., 77, 758 (2002). https://doi.org/10.1002/bit.10158
  18. T.K. Lim, H. Ohta and T. Matsunaga, Anal Chem., 75, 3316 (2003). https://doi.org/10.1021/ac020749n
  19. J.M. Nam, C.S. Thaxton and C.A. Mirkin, Science., 301, 1884 (2003). https://doi.org/10.1126/science.1088755
  20. J. Das, M.A. Aziz and H. Yang, J. Am. Chem. Soc., 128, 16022 (2006). https://doi.org/10.1021/ja0672167
  21. S. Purushothama, S. Kradtap, C.A. Wijayawardhana, H.B. Halsall and W.R. Heineman, Analyst., 126, 337 (2001). https://doi.org/10.1039/b006798i
  22. Y. Zhang and A. Heller, Anal Chem., 77, 7758 (2005). https://doi.org/10.1021/ac051218c
  23. C. Locatelli and G. Torsi, J. Electroanal. Chem., 509, 80 (2001). https://doi.org/10.1016/S0022-0728(01)00422-3
  24. B.A. Gregg and A. Heller, J. Phys. Chem., 95, 5976 (1991). https://doi.org/10.1021/j100168a047
  25. T.J. Ohara, R. Rajagopalan and A. Heller, Anal. Chem., 66, 2451 (1994). https://doi.org/10.1021/ac00087a008
  26. G. Kenausis, C. Taylor, I. Katakis and A. Heller, J. Chem. Soc. Faraday Trans., 92, 4131 (1996). https://doi.org/10.1039/ft9969204131
  27. C. Taylor, G. Kenausis, I. Katakis and A. Heller, J. Electroanal. Chem., 396, 511 (1995). https://doi.org/10.1016/0022-0728(95)04080-8
  28. Y.-B. Choi and H.-H. Kim, J. Korean. Electrochem. Soc., 10, 152 (2007).
  29. M.O. Finot, G.D. Braybrook and M.T. McDermott, J. Electrochem. Soc., 466, 234 (1999).
  30. M.S. El-Deab, T. Okajima and T. Ohsaka, J. Electrochem. Soc., 150, A851 (2003). https://doi.org/10.1149/1.1574806
  31. Y.-R. Yuan, R. Yuan, Y.-Q. Chai, Y. Zhuo and X.-M. Miao, J. Electroanal. Chem., 626, 6 (2009). https://doi.org/10.1016/j.jelechem.2008.10.031
  32. S.-F. Liu, X.-H. Li, Y.-C. Li, Y.-F. Li, J-R. Li and L. Jiang, Electrochimica Acta., 51, 427 (2005). https://doi.org/10.1016/j.electacta.2005.04.038
  33. E. Steckhan and T. Kuwana, Ber. Bunsenges. Phys. Chem., 78, 253 (1974).

Cited by

  1. Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films vol.14, pp.12, 2014, https://doi.org/10.3390/s141018886
  2. A Simple Interfacial Platform for Homogeneous Electrochemical Immunoassays Using a Poly(Vinylimidazole)-Modified Electrode vol.17, pp.12, 2016, https://doi.org/10.3390/s17010054