DOI QR코드

DOI QR Code

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Jong-Won (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, Korea Institute of Energy Research)
  • Received : 2011.02.11
  • Accepted : 2011.03.09
  • Published : 2011.03.31

Abstract

Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

References

  1. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995).
  2. S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Amsterdam (2003).
  3. N. Sakai, H. Yokokawa, T. Horita and K. Yamaji, Int. J. Appl. Ceram. Tech., 1, 23 (2004).
  4. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, J. Electrochem. Soc., 138, 1018 (1991). https://doi.org/10.1149/1.2085708
  5. R. Koc and H.U. Anderson, J. Eur. Ceram. Soc., 9, 285 (1992). https://doi.org/10.1016/0955-2219(92)90063-J
  6. N.M. Sammes, R. Ratnaraj and M.G. Fee, J. Mater. Sci., 29, 4319 (1994). https://doi.org/10.1007/BF00414217
  7. M. Mori, Y. Hiei and N.M. Sammes, Solid State Ionics, 135, 743 (2000). https://doi.org/10.1016/S0167-2738(00)00372-6
  8. G.-Y. Lee, R.-H. Song, J.-H. Kim, D.-H. Peck, T.-H. Lim, Y.-G. Shul and D.-R. Shin, J. Electroceram., 17, 723 (2006). https://doi.org/10.1007/s10832-006-0473-1
  9. M.R. De Guiree, S.E. Dorris, R.S. Poeppel, S. Morissette and U. Balachandran, J. Mater. Sci., 8, 2327 (1993).
  10. L.P. Rivas-Vazquez, J.C. Rendon-Angeles, J.L. Rodriguez- Galicia, C.A. Gutierrez-Chavarria, K.J. Zhu and K. Yanagisawa, Solid State Ionics, 172, 389 (2004). https://doi.org/10.1016/j.ssi.2004.03.021
  11. S.R. Nair, R.D. Purohit, A.K. Tyagi, P.K. Sinha and B.P. Sharma, Mater. Res. Bull., 43, 1573 (2008). https://doi.org/10.1016/j.materresbull.2007.06.021
  12. N. Sakai, T. Kawada, H. Yokokawa, M. Dokiya and I. Kojima, J. Am. Ceram. Soc., 76, 609 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03649.x
  13. K. Deshpande, A. Mukasya and A. Varma, J. Am. Ceram. Soc., 86, 1149 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03439.x
  14. S.R. Jain, K.C. Adiga, V.R. Pai Verneker, Combust. Flame, 40, 71 (1981). https://doi.org/10.1016/0010-2180(81)90111-5
  15. J. Kingsley, K. Suresh and K.C. Patil, J. Mater. Sci., 25, 1305 (1990). https://doi.org/10.1007/BF00585441
  16. S. Bhaduri, S.B. Bhaduri and E. Zhou, J. Mater. Res., 13, 156 (1998). https://doi.org/10.1557/JMR.1998.0021
  17. L.A. Chick, J. Liu, J.W. Steevanson, T.R. Armstrong, D.E. McCready, G.D. Maupin, G.W. Coffey and C.A. Coy, J. Am. Ceram. Soc., 80, 2109 (1997).
  18. B.K. Flandermeyer, R.B. Poeppel, J.T. Dusek and H.U. Anderson, US Patent, 4,749,632 (1988).
  19. S.-H. Pi, S.-B. Lee, J.-W. Lee, T.-H. Lim, S.-J. Park, R.- H. Song, C.-O. Park and D.-R. Shin, submitted

Cited by

  1. Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) vol.50, pp.4, 2012, https://doi.org/10.9713/kcer.2012.50.4.749