DOI QR코드

DOI QR Code

Cycling Performance and Surface Chemistry of Si-Cu Anode in Ionic Liquid Battery Electrolyte Diluted with Dimethyl Carbonate

  • Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
  • Received : 2010.12.17
  • Accepted : 2011.01.22
  • Published : 2011.03.31

Abstract

Interfacial compatibility between the Si-Cu electrode and diluted ionic liquid electrolyte containing 50 vol.% of 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide (MPP-TFSI) and 50 vol.% dimethyl carbonate (DMC) in a lithium cell and dilution effect on surface chemistry are examined. ex-situ ATR FTIR analysis results reveal that the surface of the Si-Cu electrode cycled in the diluted ionic liquid electrolyte is effectively passivated with the SEI layer mainly composed of carboxylate salts-containing polymeric compounds produced by the decomposition of DMC. Surface species by the decomposition of TFSI anion and MPP cation are found to be relatively in a very low concentration level. Passivation of electrode surface with the SEI species contributes to protect from further interfacial reactions and to preserve the electrode structure over 200 cycles, delivering discharge capacity of > 1670 $mAhg^{-1}$ and capacity retention of 88% of maximum discharge capacity.

References

  1. J.M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. U. Kasavajjula, C. Wang and A.J. Appleby, J. Power Sources, 163, 1003 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  3. S.-J. Lee, J.-K. Lee, S.-H. Chung, H.-Y. Lee, S.-M. Lee and H.-K. Baik, J. Power Sources, 97-98, 191 (2001). https://doi.org/10.1016/S0378-7753(01)00761-3
  4. S. Bourderau, T. Brousse and D.M. Schleich, J. Power Sources, 81-82, 233 (1999). https://doi.org/10.1016/S0378-7753(99)00194-9
  5. J. Yin, M. Wada, K. Yamamoto, Y. Kitano, S. Tanase and T. Sakai, J. Electrochem. Soc., 153, A472 (2006). https://doi.org/10.1149/1.2160429
  6. H. Kim, B. Han, J. Choo and J. Cho, Angew. Chem. Int. Ed., 47, 10151 (2008). https://doi.org/10.1002/anie.200804355
  7. C.C. Nguyen and S.-W. Song, Electrochim. Acta, 55, 3026 (2010). https://doi.org/10.1016/j.electacta.2009.12.067
  8. C.C. Nguyen and S.-W. Song, Electrochem. Commun, 12, 1593 (2010). https://doi.org/10.1016/j.elecom.2010.09.003
  9. M. Galinski, A. Lewandowski and I. Stepniak, Electrochim. Acta, 51 5567 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  10. A. Lewandowski and A. Swiderska-Mocek, J. Power Sources, 194, 601 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.089
  11. Principles and applications of lithium secondary batteries, Hongreung Science, Edt. J.-K. Park, Seoul (2010).
  12. A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh and K. Zaghib, J. Power Sources, 195, 845 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.056
  13. D. Han, J.D. Lorentzen, J. Weinberg-Wolf and L.E. McNeil, J. Appl. Phys., 94, 2930 (2003). https://doi.org/10.1063/1.1598298
  14. V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, Electrochem. Commun., 9, 796 (2007). https://doi.org/10.1016/j.elecom.2006.11.014
  15. M.N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  16. K. Xu, Chem. Rev., 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  17. E. Pollak, G. Salitra, V. Baranchugov and D. Aurbach, J. Phys. Chem. C, 111, 11437 (2007). https://doi.org/10.1021/jp0729563
  18. G. Socrates, Infrared Characteristic Group Frequencies, Tables and Charts, 2nd ed, John Wiley & Sons, New York (1994).
  19. G.V. Zhuang, H. Yang, J. Philip N. Ross, K. Xu and T.R. Jow, Electrochem. Solid-State Lett., 9, A64 (2006). https://doi.org/10.1149/1.2142157
  20. D. Aurbach, M.L. Daroux, P.W. Faguy and E. Yeager, J. Electrochem. Soc., 134, 1611 (1987). https://doi.org/10.1149/1.2100722

Cited by

  1. Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries vol.4, pp.3, 2013, https://doi.org/10.5229/JECST.2013.4.3.108
  2. One-Step Hydrothermal Synthesis of Mesoporous Anatase TiO2Microsphere and Interfacial Control for Enhanced Lithium Storage Performance vol.3, pp.9, 2011, https://doi.org/10.1021/am200872c
  3. Understanding the Interfacial Processes at Silicon–Copper Electrodes in Ionic Liquid Battery Electrolyte vol.116, pp.28, 2012, https://doi.org/10.1021/jp3019815
  4. Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries vol.6, pp.4, 2015, https://doi.org/10.5229/JECST.2015.6.4.116
  5. Combination of acid-resistor and -scavenger improves the SEI stability and cycling ability of tin–nickel battery anodes in LiPF6-containing electrolyte vol.112, 2013, https://doi.org/10.1016/j.electacta.2013.08.121