DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Song, Min-Sun (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Lee, Kyung-Min (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Kim, In-Young (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Hwang, Seong-Ju (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University)
  • Received : 2010.12.11
  • Accepted : 2011.03.22
  • Published : 2011.03.31

Abstract

Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

References

  1. B.E. Conway, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  2. C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006). https://doi.org/10.1021/nl061576a
  3. T. Shinomiya, V. Gupta and N. Miura, Electrochim. Acta, 51, 4412 (2006). https://doi.org/10.1016/j.electacta.2005.12.025
  4. M.S. Wu, Appl. Phys. Lett., 87, 153102 (2005). https://doi.org/10.1063/1.2089169
  5. R. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.-J. Hwang, J.-H. Choy and N. Munichandraiah, J. Phys. Chem. C, 113, 6303 (2009). https://doi.org/10.1021/jp811407q
  6. I.Y. Kim, H.-W. Ha, T.W. Kim, Y. Paik, J.-H. Choy and S.-J, Hwang, J. Phys. Chem. C, 113, 21274 (2009). https://doi.org/10.1021/jp908556h
  7. M. Toupin, T. Brousse and D. Belanger, Chem. Mater., 16, 3184 (2004). https://doi.org/10.1021/cm049649j
  8. B.E. Conway, V. Briss and J. Wojtowicz, J. Power Sources, 66, 1 (1997) https://doi.org/10.1016/S0378-7753(96)02474-3
  9. J.P. Zheng, P.J. Cygan and T.R. Jow, J. Electrochem. Soc., 142, 2699 (1995). https://doi.org/10.1149/1.2050077
  10. K.C. Liu and M.A. Anderson, J. Electrochem. Soc., 143, 124 (1996). https://doi.org/10.1149/1.1836396
  11. M.-S. Song, K.M. Lee, Y.R. Lee, I.Y. Kim, T.W. Kim, J.L. Gunjakar and S.-J. Hwang, J. Phys. Chem. C, 114, 22134 (2010). https://doi.org/10.1021/jp108969s
  12. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu and R. Holze, J. Phys. Chem. C, 113, 14020 (2009). https://doi.org/10.1021/jp8113094
  13. S.W. Lee, J. Kim, S. Chen, P.T. Hammond and Y. Shao-Horn, ACS Nano, 4, 3889 (2010). https://doi.org/10.1021/nn100681d
  14. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda and P.M. Ajayan, J. Phys. Chem. C, 114, 658 (2010). https://doi.org/10.1021/jp908739q
  15. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 4, 2822 (2010). https://doi.org/10.1021/nn901311t
  16. K.-W. Nam, C.-W. Lee, X.-Q. Yang, B.W. Cho, W.-S. Yoon and K.-B. Kim, J. Power Sources, 188, 323 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.133
  17. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen and Y.S. Chen, J. Phys. Chem. C, 113, 13103 (2009). https://doi.org/10.1021/jp902214f
  18. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Nano Lett., 8, 2644 (2008).
  19. H. Wang, Z. Li, J. Yang, Q. Li and Z. Zhong, J. Power Sources, 194, 1218 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.015
  20. J. Zhang, J. Jiang and X.S. Zhao, J. Phys. Chem. C, 115, 6448 (2011). https://doi.org/10.1021/jp200724h
  21. Y. Qian, S. Lu and F. Gao, Mater. Lett., 65, 56 (2011). https://doi.org/10.1016/j.matlet.2010.09.042
  22. C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010). https://doi.org/10.1021/nl102661q
  23. L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010). https://doi.org/10.1039/c000417k
  24. A.P. Yu, I. Roes, A. Davies and Z.W. Chen, Appl. Phys. Lett., 96, 253105 (2010). https://doi.org/10.1063/1.3455879
  25. S. Alwarappan, A. Erdem, C. Liu, and C.-Z. Li, J. Phys. Chem. C, 113, 8853 (2009). https://doi.org/10.1021/jp9010313
  26. Y. Omomo, T. Sasaki, L.Z. Wang and M. Watanabe, J. Am. Chem. Soc., 125, 3568 (2003). https://doi.org/10.1021/ja021364p
  27. L. Wang, Y. Omomo, N. Sakai, K. Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe and T. Sasaki, Chem. Mater., 15, 2873 (2003). https://doi.org/10.1021/cm034191r
  28. W. Hummers and R.J. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  29. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999). https://doi.org/10.1021/cm981085u
  30. D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nature Nanotech., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  31. J.-H. Choy, S.-J. Hwang and N.-G. Park, J. Am. Chem. Soc., 119, 1624 (1997). https://doi.org/10.1021/ja961993x
  32. W. Scholz and H.P.Z. Boehm, Anorg. Allg.Chem., 369, 327 (1969). https://doi.org/10.1002/zaac.19693690322
  33. G. Karpenko, V. Turov, N. Kovtyukhova, E. Bakai and A. Chuiko, Theor. Exp. Chem. (Russ.), 1, 102 (1990).
  34. T. Kyotani, K. Suzuki, H. Yamashita and A. Tomita, Tanso, 160, 255 (1993).
  35. S.-J. Hwang, H.S. Park, J.-H. Choy and G. Campet, Chem. Mater., 12, 1818 (2000). https://doi.org/10.1021/cm9905491
  36. S.-J. Hwang and J.-H. Choy, J. Phys. Chem. B, 107, 5791 (2003). https://doi.org/10.1021/jp034049d
  37. A. Manceau, A.I. Gorshkov and V.A. Drits, Am. Mineral., 77, 1133 (1992).

Cited by

  1. Controlled Supramolecular Assembly of Helical Silica Nanotube–Graphene Hybrids for Chiral Transcription and Separation vol.7, pp.3, 2013, https://doi.org/10.1021/nn306006s
  2. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications vol.38, pp.10-11, 2013, https://doi.org/10.1016/j.progpolymsci.2013.05.007
  3. Room temperature in situ chemical synthesis of Fe3O4/graphene vol.38, pp.8, 2012, https://doi.org/10.1016/j.ceramint.2012.05.014
  4. Microwave-assisted hydrothermal synthesis of electrochemically active nano-sized Li2MnO3 dispersed on carbon nanotube network for lithium ion batteries vol.591, 2014, https://doi.org/10.1016/j.jallcom.2013.12.206
  5. Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor vol.7, pp.1, 2016, https://doi.org/10.1186/s40543-016-0084-7
  6. RGO/MgO hybrid nanocomposites with high specific capacitance vol.44, pp.1, 2018, https://doi.org/10.1016/j.ceramint.2017.09.194
  7. Efficient electrode material of restacked Na–V2O5–graphene nanocomposite for Na-ion batteries vol.178, 2016, https://doi.org/10.1016/j.matlet.2016.04.161