Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Song, Min-Sun (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Lee, Kyung-Min (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Kim, In-Young (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Hwang, Seong-Ju (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University)
  • Received : 2010.12.11
  • Accepted : 2011.03.22
  • Published : 2011.03.31


Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.


  1. B.E. Conway, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  2. C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006).
  3. T. Shinomiya, V. Gupta and N. Miura, Electrochim. Acta, 51, 4412 (2006).
  4. M.S. Wu, Appl. Phys. Lett., 87, 153102 (2005).
  5. R. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.-J. Hwang, J.-H. Choy and N. Munichandraiah, J. Phys. Chem. C, 113, 6303 (2009).
  6. I.Y. Kim, H.-W. Ha, T.W. Kim, Y. Paik, J.-H. Choy and S.-J, Hwang, J. Phys. Chem. C, 113, 21274 (2009).
  7. M. Toupin, T. Brousse and D. Belanger, Chem. Mater., 16, 3184 (2004).
  8. B.E. Conway, V. Briss and J. Wojtowicz, J. Power Sources, 66, 1 (1997)
  9. J.P. Zheng, P.J. Cygan and T.R. Jow, J. Electrochem. Soc., 142, 2699 (1995).
  10. K.C. Liu and M.A. Anderson, J. Electrochem. Soc., 143, 124 (1996).
  11. M.-S. Song, K.M. Lee, Y.R. Lee, I.Y. Kim, T.W. Kim, J.L. Gunjakar and S.-J. Hwang, J. Phys. Chem. C, 114, 22134 (2010).
  12. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu and R. Holze, J. Phys. Chem. C, 113, 14020 (2009).
  13. S.W. Lee, J. Kim, S. Chen, P.T. Hammond and Y. Shao-Horn, ACS Nano, 4, 3889 (2010).
  14. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda and P.M. Ajayan, J. Phys. Chem. C, 114, 658 (2010).
  15. S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 4, 2822 (2010).
  16. K.-W. Nam, C.-W. Lee, X.-Q. Yang, B.W. Cho, W.-S. Yoon and K.-B. Kim, J. Power Sources, 188, 323 (2009).
  17. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen and Y.S. Chen, J. Phys. Chem. C, 113, 13103 (2009).
  18. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Nano Lett., 8, 2644 (2008).
  19. H. Wang, Z. Li, J. Yang, Q. Li and Z. Zhong, J. Power Sources, 194, 1218 (2009).
  20. J. Zhang, J. Jiang and X.S. Zhao, J. Phys. Chem. C, 115, 6448 (2011).
  21. Y. Qian, S. Lu and F. Gao, Mater. Lett., 65, 56 (2011).
  22. C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010).
  23. L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010).
  24. A.P. Yu, I. Roes, A. Davies and Z.W. Chen, Appl. Phys. Lett., 96, 253105 (2010).
  25. S. Alwarappan, A. Erdem, C. Liu, and C.-Z. Li, J. Phys. Chem. C, 113, 8853 (2009).
  26. Y. Omomo, T. Sasaki, L.Z. Wang and M. Watanabe, J. Am. Chem. Soc., 125, 3568 (2003).
  27. L. Wang, Y. Omomo, N. Sakai, K. Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe and T. Sasaki, Chem. Mater., 15, 2873 (2003).
  28. W. Hummers and R.J. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
  29. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999).
  30. D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nature Nanotech., 3, 101 (2008).
  31. J.-H. Choy, S.-J. Hwang and N.-G. Park, J. Am. Chem. Soc., 119, 1624 (1997).
  32. W. Scholz and H.P.Z. Boehm, Anorg. Allg.Chem., 369, 327 (1969).
  33. G. Karpenko, V. Turov, N. Kovtyukhova, E. Bakai and A. Chuiko, Theor. Exp. Chem. (Russ.), 1, 102 (1990).
  34. T. Kyotani, K. Suzuki, H. Yamashita and A. Tomita, Tanso, 160, 255 (1993).
  35. S.-J. Hwang, H.S. Park, J.-H. Choy and G. Campet, Chem. Mater., 12, 1818 (2000).
  36. S.-J. Hwang and J.-H. Choy, J. Phys. Chem. B, 107, 5791 (2003).
  37. A. Manceau, A.I. Gorshkov and V.A. Drits, Am. Mineral., 77, 1133 (1992).

Cited by

  1. Controlled Supramolecular Assembly of Helical Silica Nanotube–Graphene Hybrids for Chiral Transcription and Separation vol.7, pp.3, 2013,
  2. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications vol.38, pp.10-11, 2013,
  3. Room temperature in situ chemical synthesis of Fe3O4/graphene vol.38, pp.8, 2012,
  4. Microwave-assisted hydrothermal synthesis of electrochemically active nano-sized Li2MnO3 dispersed on carbon nanotube network for lithium ion batteries vol.591, 2014,
  5. Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor vol.7, pp.1, 2016,
  6. RGO/MgO hybrid nanocomposites with high specific capacitance vol.44, pp.1, 2018,
  7. Efficient electrode material of restacked Na–V2O5–graphene nanocomposite for Na-ion batteries vol.178, 2016,