Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers

  • Lee, Kyung-Hea (Department of Food and Nutrition, Changwon National University) ;
  • Park, Eun-Ju (Department of Food and Nutrition, Kyungnam University) ;
  • Lee, Hye-Jin (Department of Food and Nutrition, Changwon National University) ;
  • Kim, Myeong-Ok (Department of Food and Nutrition, Changwon National University) ;
  • Cha, Yong-Jun (Department of Food and Nutrition, Changwon National University) ;
  • Kim, Jung-Mi (Department of Food and Nutrition, Kyungnam University) ;
  • Lee, Hye-Ran (Department of Food and Nutrition, Korea University) ;
  • Shin, Min-Jeong (Department of Food and Nutrition, Korea University)
  • Received : 2010.10.12
  • Accepted : 2011.01.06
  • Published : 2011.02.28


Limited information from human studies indicates that dietary quercetin supplementation influences blood lipid profiles, glycemic response, and inflammatory status, collectively termed cardiometabolic risks. We tested the hypothesis that quercetin-rich supplementation, derived from onion peel extract, improves cardiometabolic risk components in healthy male smokers in a randomized, double blinded, placebo-controlled parallel design. Randomly assigned subjects were instructed to take either the placebo (n=43) or 100 mg quercetin capsules each day (n=49) for 10 weeks. Anthropometric parameters and blood pressure were measured, and blood lipids, glucose, interleukin-6, and soluble vascular cell adhesion molecule-1 (sVCAM-1) were determined at baseline and after 10 weeks of quercetin supplementation. Quercetin-rich supplementation significantly reduced serum concentrations of total cholesterol (P<0.05) and LDL-cholesterol (P<0.01), whereas these effects were not shown in the placebo group. Furthermore, significant increases were observed in serum concentrations of HDL-cholesterol both in the placebo (P<0.005) and quercetin-rich supplementation group (P<0.001); however, changes in HDL-cholesterol were significantly greater in subjects receiving quercetin-rich supplementation than the placebo. Both systolic (P<0.05) and diastolic blood pressure (P<0.01) decreased significantly in the quercetin-rich supplementation group. Glucose concentrations decreased significantly after 10 weeks of quercetin-rich supplementation (P<0.05). In contrast, no effects of quercetin-rich supplementation were observed for the inflammatory markers-IL-6 and sVCAM-1. Daily quercetin-rich supplementation from onion peel extract improved blood lipid profiles, glucose, and blood pressure, suggesting a beneficial role for quercetin as a preventive measure against cardiovascular risk.


  1. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 1996; 312:478-81.
  2. Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 2002;75:880-6.
  3. Sesso HD, Gaziano JM, Buring JE, Hennekens CH. Coffee and tea intake and the risk of myocardial infarction. Am J Epidemiol 1999;149:162-7.
  4. Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005;81:317S-325S.
  5. Erdman JW Jr, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 2007; 137:718S-737S.
  6. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 1995;33:1061-80.
  7. Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 1997;119:99-107.
  8. Duthie SJ, Collins AR, Duthie GG, Dobson VL. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes. Mutat Res 1997;393:223-31.
  9. Noroozi M, Angerson WJ, Lean ME. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr 1998;67:1210-8.
  10. Odbayar TO, Badamhand D, Kimura T, Takashi Y, Tsushida T, Ide T. Comparative studies of some phenolic compounds (quercetin, rutin, and ferulic acid) affecting hepatic fatty acid synthesis in mice. J Agric Food Chem 2006;54:8261-5.
  11. Kamada C, da Silva EL, Ohnishi-Kameyama M, Moon JH, Terao J. Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radic Res 2005;39:185-94.
  12. Igarashi K, Ohmuma M. Effects of isorhamnetin, rhamnetin, and quercetin on the concentrations of cholesterol and lipoperoxide in the serum and liver and on the blood and liver antioxidative enzyme activities of rats. Biosci Biotechnol Biochem 1995;59: 595-601.
  13. Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 2001;133:117-24.
  14. Manjeet K R, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int J Immunopharmacol 1999;21:435-43.
  15. Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 2006;13:319-28.
  16. Hubbard GP, Stevens JM, Cicmil M, Sage T, Jordan PA, Williams CM, Lovegrove JA, Gibbins JM. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J Thromb Haemost 2003;1:1079-88.
  17. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81:243S-255S.
  18. Ministry of Health & Welfare. Korean food composition table. Seoul: 1996.
  19. National Rural Living Science Institute. Food composition table, 5th Revision. Suwon: 1996.
  20. Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 2009; 11:761-5.
  21. Wilson PW, Meigs JB. Cardiometabolic risk: a Framingham perspective. Int J Obes (Lond) 2008;32 Suppl 2:S17-20.
  22. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002;76:560-8.
  23. Gnoni GV, Paglialonga G, Siculella L. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells. Eur J Clin Invest 2009;39:761-8.
  24. Glasser G, Graefe EU, Struck F, Veit M, Gebhardt R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine 2002;9:33-40.
  25. Lee KH, Kim YH, Park EJ, Cho SR. Study on dietary habit and effect of onion powder supplementation on serum lipid levels in early diagnosed hyperlipidemic patients. J Korean Soc Food Sci Nutr 2008;37:561-70.
  26. Castilla P, Echarri R, Davalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gomez-Coronado D, Ortuno J, Lasuncion MA. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 2006;84:252-62.
  27. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D, Shachter NS, Fernandez ML. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 2005;135: 1911-7.
  28. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000; 130:2243-50.
  29. Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G, Mueller MJ. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 2008;138:1615-21.
  30. Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 1998;128:593-7.
  31. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 2009;102:1065-74.
  32. DeMarini DM. Genotoxicity of tobacco smoke and tobacco condensate: a review. Mutat Res 2004;567:447-74.
  33. Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, Liu X, Zweier JL. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol 2011;300:H388-96.
  34. Ministry of Health and Social Welfare. The Korea National Health & Nutrition Examination Survey Report. Seoul: 2008.
  35. Tonstad S, Andrew Johnston J. Cardiovascular risks associated with smoking: A review for clinicians. Eur J Cardiovasc Prev Rehabil 2006;13:507-14.
  36. Jalili T, Carlstrom J, Kim S, Freeman D, Jin H, Wu TC, Litwin SE, Symons JD. Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J Cardiovasc Pharmacol 2006;47:531-41.
  37. Garcia-Saura MF, Galisteo M, Villar IC, Bermejo A, Zarzuelo A, Vargas F, Duarte J. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 2005; 270:147-55.
  38. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007;137:2405-11.
  39. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 2005; 51:117-23.
  40. Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988;5:113-24.
  41. Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008;16:2081-7.

Cited by

  1. Prevention and treatment of alopecia areata with quercetin in the C3H/HeJ mouse model vol.17, pp.2, 2012,
  2. Protective effect of dietary flavonoid quercetin against lipemic-oxidative hepatic injury in hypercholesterolemic rats vol.50, pp.8, 2012,
  3. Onion peel tea ameliorates obesity and affects blood parameters in a mouse model of high-fat-diet-induced obesity vol.7, pp.2, 2013,
  4. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects vol.5, pp.3, 2014,
  5. -Induced Inhibition of Gap-Junctional Intercellular Communication is Mediated through Quercetin vol.79, pp.5, 2014,
  6. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial vol.114, pp.08, 2015,
  7. Antioxidative Activity of Onion Peel Extract in Obese Women: A Randomized, Double-blind, Placebo Controlled Study vol.20, pp.3, 2015,
  8. Cardioprotective Efficacy of Red Wine Extract of Onion in Healthy Hypercholesterolemic Subjects vol.30, pp.3, 2015,
  9. Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: a randomized, single-blinded, cross-over study vol.6, pp.5, 2015,
  10. Hypocholesterolemic Efficacy of Quercetin Rich Onion Juice in Healthy Mild Hypercholesterolemic Adults: A Pilot Study vol.70, pp.4, 2015,
  11. Role of dietary phenols in mitigating microglia-mediated neuroinflammation vol.18, pp.3, 2016,
  12. Quercetin metabolism by fecal microbiota from healthy elderly human subjects vol.12, pp.11, 2017,
  13. No effects of quercetin from onion skin extract on serum leptin and adiponectin concentrations in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded, placebo-controlled crossover trial vol.56, pp.7, 2017,
  14. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials vol.57, pp.4, 2017,
  15. Cholesterol-Lowering Activity of Tartary Buckwheat Protein vol.65, pp.9, 2017,
  16. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.) vol.8, pp.1664-462X, 2017,
  17. Impact of Flavonols on Cardiometabolic Biomarkers:  A Meta‐Analysis of Randomized Controlled Human  Trials to Explore the Role of Inter‐Individual  Variability vol.9, pp.2, 2017,
  18. Chemical characterization and functional properties of selected leafy vegetables for innovative mixed salads pp.01458884, 2017,
  19. Polyphenols and their benefits: A review pp.1532-2386, 2017,
  20. Aortic Relaxant Activity of Crataegus gracilior Phipps and Identification of Some of Its Chemical Constituents vol.19, pp.12, 2014,
  21. Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: a randomized dose-response study vol.104, pp.1, 2016,
  22. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials vol.5, pp.7, 2016,
  23. LDL Oxidation vol.2018, pp.1741-4288, 2018,