마그네슘합금의 조직제어(組織制御)와 성형가공(成形加工) 및 스크랩 리싸이클링 기술(技術)

Microstructure Control, Forming Technologies of Mg Alloys and Mg Scrap Recycling

  • 심재동 (한국과학기술정보연구원) ;
  • 이동휘 (한국과학기술정보연구원)
  • Shim, Jae-Dong (Korea Institute of Science and Technology Information) ;
  • Lee, Dong-Hui (Korea Institute of Science and Technology Information)
  • 투고 : 2010.11.02
  • 심사 : 2010.12.30
  • 발행 : 2011.02.26


마그네슘 합금은 비중이 1.74로 가벼운데다 비강도는 구조용 금속 중에서 가장 크며, 방진성, 전자파 차폐성, 저용점 용 여러 가지 장점이 있어 최근 자동차 부품과 전자산업 제품 분야에서 이용이 크게 기대되는 금속이다. 그러나 마그네슘의 결정구조는 조밀 육방정이기 때문에 소성변형이 가능한 슬립면이 한정되어 있으며 압연이나 압출가공 시에는 강한 집합조직이 형성되어 상온가공이 곤란하다. 따라서 지금까지 성형성 개선을 위한 조직제어와 성형기술 분야에서 많은 연구개발이 이루어져 왔다. 본고에서는 결정립과 집합조직에 관한 미세조직의 제어방법, 용체성형, 압연 및 압출에 관한 성형가공 기술과 마그네슘 스크랩 리싸이클링 기술에 관하여 최근의 연구개발 사례를 소개한다.

Recently, magnesium alloys are in the spotlight as a promising materials in the fields of automobile parts and electronic appliances due to their merits representing light weight, high specific strength, damping property, shielding of electromagnetic wave and so on. However, magnesium alloys show a poor formability at room temperature because magnesium has HCP crystal structure with limited slip planes and strong basal texture is formed during plastic deformation process such as rolling and extrusion. Therefore, many R&D efforts have been paid for improvement of formability through grain refinement, texture control and various forming technologies. This paper is giving an overview about recent achievements on control of microstructures, forming technologies and magnesium scrap recycling.



연구 과제 주관 기관 : 한국과학기술정보연구원(KISTI)


  1. 左海哲夫, 2009: マグネシム合金の壓延による組織制御, 塑性と加工, 50(578), pp. 201-205.
  2. Yu Yoshida at al, 2005: Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Sci. Tech. Adv. Mater, 6, pp. 185-194.
  3. Jie Xing et al., 2004: Formation of fine grained structure in a alloy AZ31 during multi-directional forging with decreasing deformation temperature, J. Japan Inst. Light Met. 54(11), pp. 527-531.
  4. 水沼 晉, 2009: ねじり壓出しにおける大ひずみ加工特性と 結晶粒微細化, 塑性と加工, 50(578), pp. 186-191.
  5. 高津正秀, 2009: マグネシム合金板の成形性評價と成形性 改善の取組み, 塑性と加工, 50(576), pp. 13-17.
  6. 小山克己, 小松原俊雄, 2009: 溫間異周速壓延による高r値 のアルミニウム薄板の創製, 塑性と加工, 50(578), pp. 211-215.
  7. 異周速壓延法:
  8. 中浦祐典, 渡部 晶, 大堀 紘一, 2008: 異周速壓延によるマ グネシム合金板の結晶粒微細化と壓延加工性向上, 金屬, 78(4), pp. 341-346.
  9. Yasumasa Chino et al., 2006: Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet, Material Science Engineering, A441, 2006, pp. 349356.
  10. Yasumasa Chino et al., 2006: Press formability of a rolled AZ31 Mg alloy sheet with controlled texture, Materials Letters, 60, pp.173-176.
  11. 심재동, 2007: KISTI 유망기술 100선(가공성형성이 우수한 마그네슘 합금), KISTI 발간, pp. 1-52.
  12. 附田之欣, 2007: マグネシウム合金のチクソモルディグ, 塑性と加工, 48(556), pp. 396-400.
  13. 茂木徹一, 2008: 小形薄肉加工できるマグネシム合金の半凝固半溶融鑄造, 工業材料, 56(7), pp. 62-67.
  14. 左藤雅彦, 2007: Mg合金の板壓延とその利用, 塑性と加工, 48(556), pp. 373-378.
  15. A. J. Den Bakker A. J. et al., 2004: Process and Alloy Development for Hydrostatic Extrusion of magnesium, Proc. 6th Inter. Conf. on Mag. Alloys & Appl., Wiley-VCH Verglag, 2004, pp. 324-330.
  16. 村井 勉, 2007: マグネシウム合金の壓出し架空と形材への 利用, 塑性と加工, 48(556), pp. 379-383.
  17. J. Y. Byun et al., 1998 : Effect of Alloying Elements on the Iron Solubility of Magnesium alloys, J. Kor. Inst. Met. & Tater. 36(10), pp. 1715-1721.
  18. 심재동, 변지영 : 경량부품소재의 Recycling기술개발, KIST보고서 2000-G-AM-01-C-007.
  19. 東 健司, 2009: NEDOプログラム, マグネシウム鍛造部 材技術開發プロジェクト, の目指す新展開, 輕金屬, 59(10), pp. 576-588.

피인용 문헌

  1. Precipitation of Magnesium Sulfate from Concentrated Magnesium Solution for Recovery of Magnesium in Seawater vol.25, pp.4, 2016,
  2. Production of Concentrated Magnesium Solution from Seawater Using Industrial By-products vol.25, pp.3, 2016,
  3. Analysis of Tube Extrusion Process Conditions Using Mg Alloy for Automotive Parts vol.36, pp.12, 2012,