A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis

열분석을 통한 내화 뿜칠재 일치성분석 연구

  • Received : 2010.08.16
  • Accepted : 2011.02.11
  • Published : 2011.02.28


As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

최근 건축물이 고층화 및 대형화됨에 따라 건축물의 주요 구조부 중 기둥과 보를 철근콘크리트가 아닌 철골구조로 많이 시공하고 있다. 건축물의 뼈대가 되는 철골에는 내화피복재를 코팅하여 화재에 견딜 수 있는 구조로 시공한다. 내화시험(실제 규모 화재시험)을 수행하지 않고 현장에 시공된 내화피복재의 성능을 확인할 수 있는 간편한 시험방법의 도입이 필요하다. 본 연구는 내화뿜칠재에 대한 성분분석(기기분석)을 통하여 과학적이며 빠른 분석이 가능한 현장분섭법을 도출하였으며 열분석을 이용하여 내화성능이 확인된 내화뿜칠재의 고유지문영역을 확보하고 이를 표준물질로 Database화하여 현장시공재료에 대한 일치 성분석에 활용 가능함을 실험을 통하여 입증하였다.



  1. E. Arthur and P.E. Cote, Fundamentals of Fire Protection, Jones & Bartlett Pub, Massachusetts, pp.151-152(2004)
  2. D.A. Skong, F.J. Holler, and T.A. Nieman, Principle of Instrumental Analysis, Saunders College Publishing, pp.47-48, p.328(1998).
  3. V.S. Ramachandran, Applications of Differential Thermal Analysis in Cement Chemistry, Chemical Publishing Company, Inc., New York, p.307(1969).
  4. T.L. Webb, J.E. Kruuger, in: R.C. Mackenzie (Ed.): Differential Thermal Analysis, Vol.2, Academic Press, London, pp.181-205(1972).
  5. R. Barta, Differential Thermal Analysis, Vol.2, Academic Press, London, pp.207-228(1972).
  6. V.S. Ramachandran, Handbook of Analytical Techniques in Concrete Science and Technology, William Andrew Publishing, Norwich, pp.127-173(2001)
  7. S.K. Handoo, Advances in Cement Technology: Chemistry, Manufacture and Testing, 2nd Edition, Tech Books International, New Delhi, pp.631- 659(2002).
  8. W. Ku, R.H. Storer, and C. Georgakis, Disturbance Detection and Isolation by Dynamic Principal Component Analysis, Chemometrics Intell. Lab. Syst., pp. 179-196(1995).
  9. R.M. Siliverstein, G.C. Bassler, and T.C. Morrill, Spectrometric Identification of Organic Compound, 5th ed., New York, pp.158-163(1991).
  10. Frost, Ray L., Martens, Wayde N. and Hales, Matthew C., Thermogravimetric analysis of selected group II carbonate minerals - implication for the geosequestration of greenhouse gases. Journal of Thermal Analysis and Calorimetry, pp.999-1005 (2009).
  11. D.-M. Yoon, Y.-H. Lee, C. Han, H.S. An, and S.Y. Chang, Fault Detection and Diagnosis in Film Processing Plants, Korean Chem., pp.585-591(2003).
  12. L.H. Chiang, E.L. Russell, and R.D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer, London(2001).
  13. 조남욱, 전수민, 강성훈, 인기호, 이동호, "적외선분광 법을 이용한 내화피복재 일치성 평가방법 연구", 한국화재소방학회 논문지, Vol.24, No.3, pp.20-24 (2010).