Photocatalytic Decomposition of Methylene Blue over Sm Ion Doped Ti-SBA-15 Catalysts

Sm이온이 도핑된 Ti-SBA-15 촉매에서의 메틸렌블루의 광촉매 분해 반응

  • Jung, Won-Young (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Seong-Hun (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2011.01.24
  • Accepted : 2011.03.11
  • Published : 2011.04.30


Ti-SBA-15 catalysts doped with samarium ion were synthesized using conventional hydrothermal method. The physical properties of Sm/Ti-SBA-15 catalysts have been characterized by XRD, FT-IR, DRS and PL. In addition, we have also examined the activity of these materials on the photocatalytic decomposition of methylene blue. The Sm/ Ti-SBA-15 was shown to have the mesoporous structure regardless of Sm ion doping. With doping amount of 1% lanthanide ion, the pore size and pore volume of Sm(Er, Cs)/Ti-SBA-15 decreased and the surface area increased. For the purpose of vibration characteristics on the Ti-SBA-15 and Sm/Ti-SBA-15 photocatalysts, the IR absorption at 960 $cm^{-1}$ commonly accepted the characteristic vibration of Ti-O-Si bond. 1% of Sm/Ti-SBA-15 had the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with Er ions had lower activity in comparison with pure Ti-SBA-15 catalyst.


Sm/Ti-SBA-15 catalysts;Photocatalytic decomposition of methylene blue


Supported by : 부경대학교


  1. Alba, M. D., Luan, Z., Klinowski, J., 1996, Titanosilicate Mesoporous Molecular Sieve MCM-41: Synthesis and Characterization, J. Phys. Chem., 100, 2178- 2182.
  2. Boccuti, M., Rao, K. M., Zecchina, A., Leofanti, G., Petrini, G., Morterra, C., Zecchina, A., Costa, G., 1989, Structure and Reactivity of Surfaces, Elsevier, Amsterdam, 33-34.
  3. Jung, W. Y., Lim, K. W., Lee, G. D. Park, S. S., Hong, S. S., 2011, Synthesis of $TiO_2$ supported on SBA-15 using chelating method and their photocatalytic decomposition of methylene blue, J. Nanosci. & Nanotech., 11, 833-837.
  4. Kamat, P. V., Dimitrijevic, N. M., 1990, Colloidal semiconductors as photocatalysts for solar energy conversion, Solar Energy, 44, 83-98.
  5. Li, G., Zhao, X. S., 2006, Characterization and Photocatalytic Properties of Titanium-Containing Mesoporous SBA-15, Ind. Eng. Chem. Res., 45, 3569-3573.
  6. Lopez, T., Rojas, F., Alexander-Katz, R., Galindo, F., Balankin, A., Buljan, A., 2004, Porosity, structural and fractal study of sol-gel $TiO_2-CeO_2$ mixed oxides, J. Solid State Chem., 177, 1873-1885.
  7. Palmisano, L., Augugliaro, V., Schiavello, M., Sclafani, A., 1989, Influence of Acid-base Properties on Photocatalytic and Photochemical processes, J. Mol. Catal., 56, 284-295
  8. Saif, M., Abdel-Mottaleb, M. S. A., 2007, Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications, Inorganica Chimica Acta, 360, 2863-2874.
  9. Tuel, A., 1995, Synthesis, characterization, and catalytic properties of titanium silicoaluminophosphate TAPSO-5, Zeolite, 15, 228-235.
  10. Uno, M., Kosuga, A., Okui, M., Horisaka, K., Yamanaka, S., 2005, Photoelectro chemical study of lanthanide titanium oxides, $Ln_2Ti_2O_7$ (Ln = La, Sm, and Gd), J. Alloys & Compd., 400, 270-275.