유기질 비료 급원이 배 과원의 토양 물리화학성 및 미생물성에 미치는 영향

Effects of Nutrient Source on Soil Physical, Chemical, and Microbial Properties in an Organic Pear Orchard

  • 최현석 (국립농업과학원 유기농업과) ;
  • 이웅 (전남대학교 원예학과) ;
  • 김월수 (전남대학교 원예학과) ;
  • 이연 (국립농업과학원 유기농업과)
  • Choi, Hyun-Sug (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Li, Xiong (Department of Horticulture, Chonnam National University) ;
  • Kim, Wol-Soo (Department of Horticulture, Chonnam National University) ;
  • Lee, Youn (Organic Agriculture Division, National Academy of Agricultural Science)
  • 투고 : 2010.06.30
  • 심사 : 2011.03.10
  • 발행 : 2011.03.31


본 연구는 유기농 배 과원에서 2년간 시용한 여러 종류의 유기질 퇴비와 화학비료에 따른 시기별 토양 물리화학성 및 미생물성에 미치는 영향을 구명하고자 수행하였다. 대조구는 NPK 화학비료를 시용한 처리구를 선정하였고 유기질 비료는 유박과 휴믹산 그리고 키틴퇴비를 포함하였다. 모든 처리구는 질소성분량 200 g/나무 양으로 동일시해서 2008년부터 2009년까지 2년간 매해 3월 30일에 수관주위에 산포 처리하였다. 토양 물리성은 처리구간에 별다른 영향이 없었다. 5월과 8월에 조사된 토양 유기물과 전질소 그리고 칼륨, 칼슘, 마그네슘 농도는 유기질 비료 처리구에서 일반적으로 대조구보다 높게 나타났고 유기질 비료간에 일관성 있는 효과가 나타나지 않았다. ${\beta}$-glucosidase를 제외하고 미생물 생체량 탄소와 질소, dehydrogenase, acid-phosphatase, 그리고 chitinase활성은 시기별로 증가하는 경향을 보였다. 8월 조사에서 유기질 비료인 유박과 키틴퇴비는 대조구보다 높은 미생물 활성이 나타났다.


Chitin;Humic;Oil cake;Organic fertilizer;Soil properties


  1. Choi, H.S., Li, X., Kim, W.S., Lee, Y., 2010a. Comparison of fruit quality and antioxidant compound of 'Niitaka' pear trees grown in the organically and conventionally managed systems, Korean J. Environ. Agric. 29, 363-373.
  2. Choi, H.S., Li, X., Kim, W.S., Choi, K.J., Lee, Y., Jung, S.K., 2010b. Soil characteristics and leaf and bud developments with different organic fertilizers in a pear orchard, Korean J. Organic Agric. 18, 363-375.
  3. Choi, K.H., Lee, D.H., Song, Y.Y., Nam, J.C., Lee, S.W., 2010c. Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic cultured apple orchards in Korea, Korean J. Organic Agric. 18, 221-232.
  4. Chung, J.B., Lee, Y.J., 2008. Comparison of soil nutrient status in conventional and organic apple farm, Korean J. Soil Sci. Fert. 41, 26-33.
  5. Granatstein, D., 2002. North American trends for organic tree fruit production, Compact Fruit Tree 35, 83-87.
  6. Hati, K.M., Swarup, A., Dwivedi, A.K., Misra, A.K., Bandyopadhyay, K.K., 2007. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring, Agric. Ecosys. Environ. 119, 127-134.
  7. Joergensen, R.G., Brookes, P.C., 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M $K_2{SO}_4$ soil extracts, Soil Biol. Biochem. 22, 1023-1027.
  8. Kim, L.Y., Cho, H.J., Han, K.H., 2004. Changes of physical properties of soils by organic material application in farm land, Korean J. Soil Sci. Fert. 37, 304-314.
  9. Laakso, J., Setala, H., Palojarvi, A., 2000. Influence of decomposer food web structure and nitrogen availability on plant growth, Plant Soil 225, 153-165.
  10. Ladd, J.N., Jocteur-Monrozier, L., Amato, M., 1992. Carbon turnover and nitrogen transformations in an alfisol and vertisol amended with [$U‐^{14}C$] glucoseand [$^{15}N$] ammoniumsulfate, Soil Biol. Biochem. 24, 359-371.
  11. Lagomarsino, A., Moscatelli, M.C., Di Tizio, A., Mancinelli, R., Grego, S., Marinari, S., 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a mediterranean environment, Ecol. Indic. 9, 518-527.
  12. Lee, S.H., Kim, W.S., Kim, K.Y., Kim, T.H., Whangbo, H., Jung, W.J., Chung, S.J., 2003. Effect of chitin compost incorporated with chitinolytic bacteria and rice bran on chemical properties and microbial community in pear orchard soil, J. Korean Soc. Hort. Sci. 44, 201-206.
  13. Marinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy, Ecol. Indic. 6, 701-711.
  14. Mazzarino, M.J., Szott, L., Jimenes, M., 1992. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agro-ecosystems, Soil Biol. Biochem. 25, 205-214.
  15. Peck, G.M., Andrews, P.K., Rhichter, C., Reganold, J.P., 2005. Internationalization of the organic fruit market: The case of Washington State's organic apple exports to the European Union, Renew. Agr. Food Syst. 20, 101-112.
  16. Reganold, J.P., Glover, J.D., Andrew, P.K., Hinman, H.R., 2001. Sustainability of three apple production systems, Nature 410, 926-930.
  17. Saha, S., Mina, B.L., Gopinath, K.A., 2008. Organic amendments affect biochemical properties of a subtemperate soil of the Indian Himalayas, Nur. Cycl. Agroecosys. 80, 233-242.
  18. Sakamoto, K., Oba, Y., 1993. Relationship between available N and soil biomass in upland field soils, Jpn. J. Soil Sci.Plant Nutr. 64, 42-48.
  19. Skujins, J., 1978. History of abiotic soil enzyme research, in: Burns, R.G. (Ed), Soil enzymes, Academic press, USA, pp. 1-49.
  20. Tabatabai, M.A., 1982. Soil enzymes, in: Page, A.L., Miler, R.H., Keeney, D.R. (Eds), Methods of soil analysis, Part 2, Chemical and microbiological properties, Am. Soc. Agron., USA, pp. 903-947.
  21. Tate, K.R., Ross, D.J., Feltham, C.W., 1988. A direct extraction method to estimate soil microbial C: effect of experimental variables and some different calibration procedure, Soil Biol. Biochem. 20, 329-335.
  22. Trotta, A., Verese, G.C., Gnavi, E., Fusconi, A., Sampo, S., Gerta, G., 1996. Interaction between the soilborne root pathogen Phytoptthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomos mosseae in tomato plants, Plant Soil 185, 199-209.
  23. Yedidia, I., Benhamou, N., Kapulnik, Y., Chet, I., 2000. Induction and accumulation of PR protein activities during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203, Plant Physiol. Biochem. 38, 863-873.