DOI QR코드

DOI QR Code

Optimal Design of a Linear Structural Control System Considering Loading Uncertainties

하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계

  • 박원석 (서울대학교 교량설계핵심기술 연구단) ;
  • 박관순 (동국대학교-서울캠퍼스 건축공학과)
  • Received : 2010.08.10
  • Accepted : 2010.09.20
  • Published : 2011.04.30

Abstract

An optimal design method for a structural control system considering load variations due to their uncertain characteristics is studied in this paper. The conventional design problem for a control system generally deals with the optimization problem of a structural control system and interaction between the structure and the control device. This study deals with the optimization problem of a load-structure-control system and the more complicated interactions with each other. The problem of finding the load that maximizes the structural responses and the structural control system that minimizes the responses simultaneously is formulated as the min-max problem. In order to effectively obtain the optimal design variables, a co-evolutionary algorithm is adopted and, as a result, an optimal design procedure for the linear structural control system with uncertain dynamic characteristics is proposed. The example design and simulated results of an earthquake excited structure validates the proposed method.

불확실성을 가지는 하중의 변동성을 고려한 구조제어시스템의 최적설계방법에 관하여 연구하였다. 일반적인 제어시스템의 설계 문제가 구조물과 제어시스템간의 상호작용 고려하여 구조-제어 시스템을 최적화이나, 이 연구에서는 하중-구조물-제어 시스템간의 상호작용에 대한 최적설계방법에 관하여 다루었다. 구조물의 응답을 최대화하는 하중과, 이를 최소화하는 구조제어시스템을 동시에 구하는 최대-최소문제(Min-max Problem)를 정식화하고, 최적설계변수를 효율적으로 찾는 방법으로 병렬진화 알고리즘을 이용하여 불확실성이 존재하는 선형구조제어시스템의 최적설계방법을 제시하였다. 지진하중을 받는 구조물의 제진시스템 설계 예 및 수치해석을 통하여 연구한 방법의 타당성을 검증하였다.

Acknowledgement

Supported by : 학술진흥재단

References

  1. Yao J.T.P., “Concept of structural control,” Journal of Structural Division ASCE 98, 1567-1574, 1972.
  2. Housner G.W., Bergman L.A., Caughey T.K., Chassiakos A.G., Claus R.O., Masri S.F., Skelton R.E., Soong T.T., Spencer Jr. B.F., and Yao J.T.P. “Structural control: past, present, and future,” Journal of Engineering Mechanics, Vol. 123, No. 9: 897-971, 1997. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  3. Kobori T., “Past, present and future in seismic response control of civil engineering structures,” Proceedings of the Third World Conference on Structural Control, Como, Italy, Vol. 1, 9-14, 2002.
  4. Yang J.N., and Soong T.T., “Recent advances in active control of civil engineering structures,” Probabilistic Engineering Mechanics, Vol. 3, No. 4, 179-222, 1998.
  5. Chu S.Y., Soong T.T., Reinhorn A.M., Helgeson R.J., and Riley M.A., “Integration issues in implementation of structural control systems,” Journal of Structural Control, Vol. 9, No. 1, 31-58, 2002. https://doi.org/10.1002/stc.2
  6. Soong T.T., “Active structural control: theory and practice,” Wiley, New York, 1990.
  7. 정찬국, 정형조, 최강민, 이인원, “스마트 수동 제어 시스템을 이용한 면진 건물의 내진 성능 개선,” 한국지진공학회 논문집, 제10권, 제6호, 37-46, 2006. https://doi.org/10.5000/EESK.2006.10.6.037
  8. 김현수, P. N. Roschke, “MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구,” 한국지진공학회 논문집, 제9권, 제2호, 7-16, 2005. https://doi.org/10.5000/EESK.2005.9.2.007
  9. 박규식, 정형조, Spencer, B. F., Jr., 이인원, “수동, 능동, 반능동 및 복합 시스템을 이용한 사장교의 지진응답 제어,” 한국지진공학회 논문집, 제7권, 제1호, 17-30, 2003. https://doi.org/10.5000/EESK.2003.7.1.017
  10. 임채욱, 문석준, 박영진, “AMD를 이용한 건물의 능동 진동 제어를 위한 강인 포화 제어기의 유용성에 관한 실험적 검증,” 한국지진공학회 논문집, 제10권, 제2호, 83-90 2006. https://doi.org/10.5000/EESK.2006.10.2.083
  11. 이상현, 박은천, 윤경조, 이성경, 유은종, 민경원, 정 란, 민정기, 김영찬, “실물 크기 구조물의 강제진동실험 및 지진응답모사를 위한 HMD제어기 설계,” 한국지진공학회 논문집, 제10권, 제6호, 103-114, 2006.
  12. 옥승용, 박관순, 송준호, 고현무, “목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계,” 한국지진공학회 논문집, 제12권, 제2호, 9-22, 2008. https://doi.org/10.5000/EESK.2008.12.2.009
  13. Symans, M.D., and Kelly, S.W., “Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Seismic Isolation Systems,” Earthquake Engineering and Structural Dynamics, Vol. 28, 37-60, 1999. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<37::AID-EQE803>3.0.CO;2-Z
  14. Yoshida, O., and Dyke, S. J., “Seismic Control of a Nonlinear Benchmark Building Using Smart Dampers” Journal of Engineering Mechanics, ASCE, Vol. 130, No. 4, 386-392, 2004. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386)
  15. Tamura, Y., Kousaka, R., and Modi, V.J., “Practical application of nutation damper for suppressing wind-induced vibrations of airport towers,” J. Wind Eng. Ind. Aerodyn. 41-44, 1919-1930, 1992.
  16. Cao, H., Reinhorn, A.M., and Soong, T.T., “Design of an active mass damper for a tall TV tower in Nanjing, China,” Engineering Structures. Vol. 20, No. 3, 134-143, 1998. https://doi.org/10.1016/S0141-0296(97)00072-2
  17. Yang, G., Spencer, B.F., Carlson, J.D., and Sain, M.K., “Large-scale MR fluid dampers: modeling and dynamic performance considerations,” Engineering Structures, Vol. 24, No. 3, 309-323, 2002. https://doi.org/10.1016/S0141-0296(01)00097-9
  18. Golafshani, A.A., Rahani, E.K., and Tabeshpour, M.R., “A new high performance semi-active bracing system,” Engineering Structures. Vol. 28, No. 14, 1972-1982, 2006. https://doi.org/10.1016/j.engstruct.2006.03.032
  19. Song, G., Sethi, V., and Li, H.N., “Vibration control of civil structures using piezoceramic smart materials: A review,” Engineering Structures, Vol. 28, No. 11, 1513-1524, 2006. https://doi.org/10.1016/j.engstruct.2006.02.002
  20. Spencer, B.F., Dyke, S.J., Sain, M.K., and Carlson, J.D., “Phenomenological Model of a Magnetorheological Damper,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 3, 230-238, 1997. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  21. Suhardjo, J., Spencer, B.F., and Kareem, A., “Frequency domain optimal control of wind-excited buildings,” Journal of Engineering Mechanics, ASCE, Vol. 118, No. 12 2463-2481, 1992. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:12(2463)
  22. Chung, L.L., Wu, L.Y., and Jin, T.G., “Acceleration feedback control of seismic structures,” Engineering Structures, Vol. 20, No. 1-2, 62-74, 1998. https://doi.org/10.1016/S0141-0296(97)00060-6
  23. Wu, J.C., Yang, J.N., and Schmitendorf, W.E., “Reducedorder and LQR control for wind-excited tall buildings,” Engineering Structures, Vol. 20, No. 3, 222-236, 1998. https://doi.org/10.1016/S0141-0296(97)00081-3
  24. Zhu, W.Q., Luo, M., and Ying, Z.G., “Nonlinear stochastic optimal control of tall buildings under wind loading,” Engineering Structures, Vol. 26, No. 11, 1561-1572, 2004. https://doi.org/10.1016/j.engstruct.2004.05.006
  25. Alli, H., and Yakut, O., “Fuzzy sliding-mode control of structures,” Engineering Structures, Vol. 27, No. 2, 277-284, 2005. https://doi.org/10.1016/j.engstruct.2004.10.007
  26. Symans, M.D., and Kelly, S.W., “Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Seismic Isolation Systems,” Earthquake Engineering and Structural Dynamics, Vol. 28, 37-60, 1999. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<37::AID-EQE803>3.0.CO;2-Z
  27. Kanai, K., “Semi-empirical formula for the seismic characteristics of the ground,” Bulletin of the Earthquake Research Institute, University of Tokyo, Vol. 35, 308-325, 1957.
  28. Tajimi, H., “A statistical method of determining the maximum response of a building structure during an earthquake,” Proceedings of the Second World Conference on Earthquake Engineering, Tokyo, 781-797, 1960.
  29. 김진만, “RMS 가속도에 의한 인공 지진파 생성기법,” 한국지진공학회 논문집 제7권 제1호, 31-40, 2003. https://doi.org/10.5000/EESK.2003.7.1.031
  30. Hur, J., Lee, H., Tahk, M., “Parameter robust control design using bimatrix co-evolution algorithms,” Engineering Optimization, Vol 35, No. 4, 417-426, 2003. https://doi.org/10.1080/0305215031000154659
  31. Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,” Reading Mass, 1989.
  32. Holland, J. H., “Adaption in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, MI., 1975.