An Embedding of Multiple Edge-Disjoint Hamiltonian Cycles on Enhanced Pyramid Graphs

Chang, Jung-Hwan

  • Received : 2010.10.20
  • Accepted : 2011.02.22
  • Published : 2011.03.31


The enhanced pyramid graph was recently proposed as an interconnection network model in parallel processing for maximizing regularity in pyramid networks. We prove that there are two edge-disjoint Hamiltonian cycles in the enhanced pyramid networks. This investigation demonstrates its superior property in edge fault tolerance. This result is optimal in the sense that the minimum degree of the graph is only four.


Enhanced Pyramid Model;Hamiltonian Cycle;Edge-Disjoint Cycle


  1. F. Berman and L. Snyder, “On mapping parallel algorithms into parallel architectures,” Jr. of Parellel and Distrib. Comput., Vol.4, No.1, 1987, pp.439-458.
  2. S. G. Akl, “Parallel Computation: Models and Methods,” Prentice Hall, NJ, 1997.
  3. B. Monien and H. Sudborough, “Embedding one interconnection network in another,” Computing Supplement, Vol.7, No.1, 1990, pp.257-282.
  4. R. Miller and Q. F. Stout, “Data movement techniques for the pyramid computer,” SIAM J. on. Comput., Vol.16, No.1, 1987, pp.38-60.
  5. F. T. Leighton, “Introduction to parallel algorithms and architectures: arrays, trees, hypercubes,” Morgan Kaufmann, CA, 1991.
  6. Q. F. Stout, “Mapping vision algorithms to parallel architectures,” Proc. of the IEEE, Vol.7, No.1, 1988, pp.982-995.
  7. L. Cinque and G. Bongiovanni, “Parallel prefix computation on a pyramid computer,” Patt. Recog. Lett., Vol.16, No.1, 1995, pp.19-22.
  8. J. F. Jenq and S. Sahni, “Image shrinking and expanding on a pyramid,” IEEE Trans. Parallel Distrib. Syst., Vol.4, No.11, 1993, pp.1291-1296.
  9. R. Cipher and H. L. G. Sanz, “SIMD architectures and algorithms for image processing and computer vision,” IEEE Trans. Acoust. Speech Signal Process., Vol.37, No.12, 1989, pp.2158 2174.
  10. R. Miller and Q. F. Stout, “Data movement techniques for the pyramid computer,” SIAM J. Comput., Vol.16, No.1, 1987, pp.38-60.
  11. H. Sarbazi-Azad, M. Ould-Khaoua, and L. M. Mackenzie, “Algorithmic construction of Hamiltonians in pyramids,” Inform. Process. Lett., Vol.80, No.2, 2001, pp.75-79.
  12. D. –R. Dui, Y. -C. Chen, and R. –Y. Wu, “Proof that pyramid networks are 1 Hamiltonian-connected with high probability,” Information Sciences, Vol.177, No.24, 2007, pp.4188-4199.
  13. R. –Y. Wu and D. -R. Duh, “Hamiltonicity of the pyramid network with or without fault,” Journal of Information Science and Engineering, Vol.25, 2009, pp.531-542.
  14. F. Cao, D. Z. Du, D. F. Hsu, and S. H. Teng, “Fault tolerance properties of pyramid networks,” IEEE Trans. Comput., Vol.48, No.1, 1999, pp.88-93.
  15. J. S. -T. Juan and C. -M. Huang, “On the strong distance problems of pyramid networks,” Applied Mathematics and Computation, Vol.195, 2008, pp.154-161.
  16. K. W. Tang and S. A. Padubidri, “Diagonal and toroidal mesh networks,” IEEE Trans. Comput, Vol.43, No.7, 1994, pp.815-826.
  17. Y. -C. Chen, D. -R. Duh and H. -J. Hsieh, “On the enhanced pyramid network,” Proc. 2004 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, 2004, pp.1483-1489.
  18. Y. -C. Chen and D. -R. Duh, “Proof that enhanced pyramid networks are 2-edge-Hamiltonicity,” Proc. The 23rd Workshop on Combinatorial Mathematics and Computation Theory, Las Vegas, Nevada, 2006, pp.76-84.
  19. Y. -C. Chen and D. -R. Duh, “An optimal broadcasting algorithm for the enhanced pyramid network,” Proc. The 22nd Workshop on Combinatorial Mathematics and Computation Theory, National Cheng Kung University, Taiwan, 2005, pp.206-211.
  20. A. Caruso, S. Chessa, P. Maestrini, and P. Santi, “Fault-diagnosis of grid structures,” Theoretical Computer Science, Vol.290, No.2, 2003, pp.1149-1174.