Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka (Electronic Sciences, Delhi University) ;
  • Gupta, R.S. (Electronics & Communication Engineering, Maharaja Agrasen Institute of Technology) ;
  • Chaujar, Rishu (Applied Physics, Delhi Technological University) ;
  • Gupta, Mridula (Electronic Sciences, Delhi University)
  • Received : 2011.05.05
  • Published : 2011.09.30


In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.


  1. T.Y.Yum, L.Chiu, C.H.Chan and Q.Xue, "High- Efficiency Linear RF Amplifier-A Unified Circuit Approach to Achieving Compactness and Low Distortion," IEEE Trans. Microw. Theory Tech., Vol.54, pp.3255-3266, 2006.
  2. C.Yu, J.S.Yuan and H.Yang, "MOSFET Linearity Performance Degradation Subject to Drain and Gate Voltage Stress," IEEE Trans. Device Mater. Rel., Vol.4, pp.681-689, 2004.
  3. S.Y.Lee, Y.S.Lee and Y.H.Jeong, "A Novel Phase Measurement Technique for IM3 Components in RF Power Amplifiers," IEEE Trans. Microw. Theory Tech., Vol.54, pp.451-457, 2006.
  4. B.Razavi, RF Microelectronics, Prentice-Hall; Chapter-2, 1998.
  5. P. Malik, R. Chaujar, M. Gupta, R.S. Gupta, "Linearity Performance Assessment of Nanoscale Gate Material Engineered Trapezoidal Recessed Channel (GME-TRC) MOSFET for RFIC design and Wireless application," Nanotech conference and Expo 2010, Anaheim, CA, United state of America, pp.705-708, June, 2010.
  6. P. Malik, S.P. Kumar, R. Chaujar, M. Gupta, R.S. Gupta, "GATE MATERIAL ENGINEEREDTRAPEZIODAL RECESSED CHANNEL MOSFET FOR HIGH-PERFORMANCE ANALOG AND RF APPLICATIONS," Microwave and optical technology letter, Vol.52, pp.694-698, 2010.
  7. H. Ren, Y. Hao, "The influence of geometric structure on the hot-carrier-effect immunity for deep-sub-micron grooved gate PMOSFET," Solid- State Electronic, Vol.46, pp.665-673, 2002.
  8. International Technology Roadmap for Semiconductors (ITRS). 2004 edition.
  9. H.S. Momose, M. Ono,T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, H. Iwai, "1.5 nm directtunneling gate oxide Si MOSFET's," IEEE Trans. Electron.Dev. Vol.43, pp.1233-1242, 1996.
  10. G.D.Wilk, R.M.Wallace, J.M.Anthony, "High-K gate dielectrics: current status and materials properties considerations," J.Appl.Phys., Vol.89, pp. 5243-5275, 2001.
  11. B.-Y.Tsui, L.-F.Chin, "A Comprehensive Study on the FIBL of Nanoscale MOSFETs," IEEE Trans. Electron.Dev. Vol.51, pp.1733-1736, 2004.
  12. G. C.-F. Yeap, S. Krishnan, M.-R. Lin, "Fringinginduced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-K gate dielectrics," Electron. Lett. Vol.34, pp.1150-1152, 1998.
  13. C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White, P. Tobin, "Fermi level pinning at the PolySi/Metal Oxide interface," Symp.VLSI Tech.Dig, pp.9-10, 2003.
  14. R.M. Wallace, G.Wilk, "Alternative Gate Dielectrics for Microelectronics," MRS Bull. Vol.27, pp.192- 197, 2002.
  15. V. Mistra, G.Lucovsky, G.Parsons, "Issues in high-k gate stack interfaces," MRS Bull. Vol.27, pp.212- 216, 2002.
  16. M. Xiao-Hua, H. Yue, S. Bao-Gang, G. Hai-Xia, R. Hong-Xia, Z. Jin-Cheng, Z. Jin-Feng, Z. Xiao-Ju, Z. Wei-Dong, "Fabrication and characterization of groove-gate MOSFETs based on a self-aligned CMOS process," Chin. Phy. Soc, Vol.15, pp.195- 198, 2006.
  17. J.Y. Seo, K.J. Lee, Y.S. Kim, S.Y. Lee, S.J. Hwang, C.K. Yoon, "Reliability for recessed channel structure n-MOSFET," Microelectron. Reliab., Vol.45, pp.1317-1320, 2005.
  18. I. Polishchuk, P. Ranade, T.J. King and C. Hu, "Dual work function metal gate CMOS technology using metal interdiffusion," IEEE Electron Device Lett., Vol.22, pp.444-446, 2001.
  19. J. Lee, Y.S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin and V. Misra, "Compatibility of dual metal gate electrodes with high-k dielectrics for CMOS," IEDM Tech. Dig., pp.323-326, 2003.
  20. S. Luan, H. X. Liu and R. X. Jia, "Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)," Science in China Series E: Technological Sciences, Vol.52, pp. 2400-2405, 2009.
  21. W. Long, H. Ou, J.M. Kuo, et al, "Dual material gate (DMG) field effect transistor," IEEE Trans Electron Devices, Vol.46, pp.865-870, 1999.
  22. S.J. Lee, C.H. Choi, A. Kamath, R. Clark and D.L. Kwong, "Characterization and reliability of dual high-k gate dielectric stack $(poly-Si-HfO_{2}-SiO_{2})$ prepared by in situ RTCVD process for system-onchip applications," IEEE Electron Device Lett., Vol. 24, pp.105-107, 2003 .
  23. T. Kauerauf, B. Govoreanu, R. Degraeve, G. Groeseneken and H. Maes, "Scaling CMOS: finding the gate stack with the lowest leakage current Solid-State Electron," Vol.49, pp.695-701, 2005.
  24. P.H. Woerlee, M.J. Knitel, R. Van Langevelde, D.B.M. Klaassen, L.F. Tiemeijer, A.J. Scholten, A.T.A. Zegers-van Duijnhoven, "RF-CMOS performance trends," IEEE Trans. Electron Dev. Vol.48, pp. 1776-1782, 2001.
  25. S. Kaya, W. Ma, "Optimization of RF linearity in DG-MOSFETs," IEEE Electron Device Lett. Vol.25, pp. 308-310, 2004.
  26. N.D. Arora, R. Rios, C-L Huang and K. Raol, "PCIM: A Physically Short-Channel IGFET Model for Circuit Simulation," IEEE Trans. Electron Devices, Vol.41, pp.988-997, 1994.
  27. P. Malik, R. Chaujar, M. Gupta, R.S. Gupta, "Physics based Threshold Voltage Analysis of Gate Material Engineered Trapezoidal Recessed Channel (GME-TRC) Nanoscale MOSFET and its multilayered gate architecture," INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY, Vol.5, pp.361-368, 2010.
  28. P. H.Woerlee, M. J. Knitel, R.V. Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten, and A. T. A. Zegers-van Duijnhoven, "RF-CMOS Performance Trends," IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.48, pp.1776-1782, 2001.
  29. S. Kaya, and W. Ma, "Optimization of RF Linearity in DG-MOSFETs," IEEE ELECTRON DEVICE LETTERS, Vol.25, pp.308-310, 2004.
  30. M. Xiao-Hua, H. Yue, S. Bao-Gang, G. Hai-Xia, R. Hong-Xia, Z. Jin-Cheng, Z. Jin-Feng, Z. Xiao-Ju, and Z. Wei-Dong, "Fabrication and characterization of groove-gate MOSFETs based on a self-aligned CMOS process," Chin. Phys. Soc., Vol.15, pp.195- 198, 2006.

Cited by

  1. Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET) vol.122, pp.12, 2016,