DOI QR코드

DOI QR Code

Etching Characteristics of Ba2Ti9O20(BTO) Thin Films in Inductively Coupled an Ar/Cl2 Plasma

Ar/Cl2 혼합가스를 이용한 Ba2Ti9O20(BTO) 박막의 유도결합 플라즈마 식각

  • Kim, Young-Keun (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University) ;
  • Lee, Hyun-Woo (Division of Electronic, Computer, and Communication Engineering, Hanseo University)
  • 김용근 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과) ;
  • 이현우 (한서대학교 전자컴퓨터통신학부)
  • Received : 2010.11.04
  • Accepted : 2011.03.14
  • Published : 2011.04.01

Abstract

This work, the etching characteristics of $Ba_2Ti_9O_{20}$(BTO) thin films were investigated using an inductively coupled plasma (ICP) of $Ar/Cl_2$ gas mixture. The etch rate of BTO thin films as well as the $BTO/SiO_2$ and BTO/PR etch selectivity were measured as functions of $Ar/Cl_2$ mixing ratio (0~100% Ar) at a constants gas pressure (6 mTorr), total gas flow rate (50 sccm), input power (700 W) and bias power (200 W). The etch rate of BTO thin films decreased with increasing Ar fraction. To analyze the etching mechanism an optical emission spectroscopy (OES), double Langmuir probe(DLP) and surface analysis using X-ray photoelectron spectroscopy (XPS) were carried out.

Acknowledgement

Grant : 3D Printed 전자소자기반 그린 스마트 카드 Platform 기술

References

  1. L. Liao, J. Bai, Y. C Lin, Y. Qu, Y. Huang, and X. Duan, Adv. Mater. 22, 1941 (2010). https://doi.org/10.1002/adma.200904415
  2. K. H. Kim, B. Damon, Lehn, P. V. Rao, and R. G. Gordon, Apl. Phys. Lett. 89, 133512 (2006). https://doi.org/10.1063/1.2354423
  3. M. C. Blanco-Lopez, B. Rand, and F. L. Riley, J. Eur. Ceram. Soc. 17, 281 (1997). https://doi.org/10.1016/S0955-2219(96)00116-1
  4. S. Kumar, V. S. Raju and T. R. N. Kutty, Mater. Sci. Eng. B. 142, 78 (2007). https://doi.org/10.1016/j.mseb.2007.06.018
  5. Auciello, J. F. Scott and R. Ramesh, Physics Today, 51, 22 (1998).
  6. A. Werbowy, P. Firek, J. Chojnowski, A. Olszyna, J. Szmidt, and N. Kwietniewski, Phys. Stat. Sol.,. 4, 1578 (2007). https://doi.org/10.1002/pssc.200674132
  7. A. Efremov, N. K. Min, S. Kim and M. Kim, S. Nahmd, and K. H. Kwon, Microelectronic. Eng. 85, 1584 (2008). https://doi.org/10.1016/j.mee.2008.03.003
  8. M. Kim, N. K. Min, S. J. Yun, H. W. Lee, Efremov A and Kwon K. H, Microelectron. Eng. 85, 348 (2008). https://doi.org/10.1016/j.mee.2007.07.009
  9. Y. H. Ham, A. Efremov, N. K. Min, H. W. Lee, S. J. Yun, and K. H. Kwon, J. Appl. Phys. 48, 08HD04 (2009). https://doi.org/10.1143/JJAP.48.08HD04
  10. S. W. Na, M. H. Shin, Y. M. Chung, J. G. Han, S. H. Jeung, J. H. Boo and N. E. Lee, Microelectronic. Eng. 83, 328 (2006). https://doi.org/10.1016/j.mee.2005.09.007
  11. R. David and Lide, CRC Handbook of Chemistry and Physics. (CRC Press LLC, Washington, DC, (1998) p. 4.
  12. N. Catalin and M. Cernea, J. Optoelectron Adv M., 8, 1879 (2006).