Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy

마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향

  • Choi, Seon-Soon (Department of Car Mechatronics Engineering, SAHMYOOK University)
  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Received : 2011.01.05
  • Accepted : 2011.02.10
  • Published : 2011.02.28


In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.


Magnesium alloys;Fatigue failure life;Reliability;Weibull distribution;Specimen thickness;Stress ratio;Maximum fatigue load


Supported by : 삼육대학교


  1. Tokaji, K., Kamakura, M., Ishiizumi, Y., and Hasegawa, N., "Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy," International Journal of Fatigue, Vol. 26, pp. 1217-1224, 2004.
  2. Mordike, B. L. and Ebert, T., "Magnesium Properties-application-potential," Materials Science & Engineering (A), Vol. 302, pp. 37-45, 2001.
  3. Tokaji, K., Nakajima, M., and Uematsu, Y., "Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments," International Journal of Fatigue, Vol. 31, Issue 7, pp. 1137-1143, 2009.
  4. 최선순, 이억섭, "통계적인 경계조건이 마그네슘합금 AZ31의 피로신뢰성에 미치는 영향," 대한기계학회 2009년도 신뢰성부문 춘계학술대회 논문집, pp. 48-57, 5월, 2009.
  5. Sivapragash, M., Lakshminarayanan, P. R., and Karthikeyan, R., "Fatigue Life Prediction of ZE41A Magnesium Alloy Using Weibull Distribution," Materials and Design, Vol. 29, pp. 1549-1553, 2008.
  6. Shih, T.-S., Liu, W.-S., and Chen, Y.-J., "Fatigue of As-extruded AZ61A Magnesium Alloy," Materials Science & Engineering(A), Vol. 325, pp. 152-162, 2002.
  7. 최선순, "AZ31 마그네슘합금 시편의 두께가 피로균열진전거동의 확률분포에 미치는 영향," 한국공작기계학회지, Vol. 18, No. 4, pp. 395-400, 8월, 2009.
  8. 최선순, "AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가," 대한기계학회논문집 A권, 제33권, 제8호, pp. 707-719, 8월, 2009.
  9. 최선순, 이억섭, "평균응력이 AZ31 마그네슘합금의 랜덤진전균열크기 확률분포에 미치는 영향," 한국공작기계학회지, Vol. 18, No. 5, pp. 536-543, 10월, 2009.
  10. 최선순, "파손확률에 따른 마그네슘합금의 피로설계 수명 예측," 한국공작기계학회지, Vol. 19, No. 6, pp. 804-811, 12월, 2010.
  11. ASTM E647-00, "Standard Test Method of Fatigue Crack Growth Rates," ASTM International, 2000.
  12. Anderson, T. L., "Fracture Mechanics," CRC Press, Florida, 1995.

Cited by

  1. Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions vol.15, pp.2, 2014,