Distribution of Benthic Diatoms in Tidal Flats of Hampyeong Bay, Korea

함평만 갯벌의 저서규조류 분포 특성

  • Lee, Hak-Young (Department of Biological Science, Chonnam National University) ;
  • Jung, Myoung-Hwa (Department of Biological Science, Chonnam National University)
  • 이학영 (전남대학교 자연과학대학 생물학과) ;
  • 정명화 (전남대학교 자연과학대학 생물학과)
  • Received : 2010.12.16
  • Accepted : 2011.01.12
  • Published : 2011.02.28

Abstract

The distributional pattern of benthic diatoms in tidal flats of Hampyeong Bay, Korea, was studied from January to October in 2009. As benthic diatoms of Hampyeong Bay tidal flats, 45 species were identified, and the most dominant species was Paralia sulcata. The most diverse flora was observed at Gaip and Songseok sites in April with 22 species, and the least at Hyeonhwa site in January. The ranges of chlorophyll-a concentration in tidal flats were 21.2~31.8 mg$m^{-2}$ at Hyeonhwa site, 23.6~35.4 mg $m^{-2}$ at Gaip site, and 24.2~34.3 mg $m^{-2}$ at Songseok site. The concentrations of pheopigment ranged between 25.3 and 45.2 mg$m^{-2}$. The standing crops of benthic diatoms showed highest density in April and lowest in January, February, and October. The cell volumes of benthic diatoms were highest in April. The taxa and biomass of benthic diatoms showed correlations with temperature. On temperature variables, the benthic diatoms showed optimal occurrences at the range of $14{\sim}17^{\circ}C$.

References

  1. 고철환, 박 철, 유신재, 이원재, 이태원, 장창억, 최중기, 홍재상, 허형택. 1997. 해양생물학, 서울대학교출판부, 서울.
  2. 박용안. 1998. 바다의 과학- 해양학 원론. 서울대학교출판부, 서울.
  3. 이학영. 2002. 한국 남서부 갯벌의 저서성 미세조류의 대상 분포와 수직분포에 미치는 이화학적 요인의 효과에 관한 비교. 한국환경과학회지. 11:529-535.
  4. 해양수산부. 1999. 갯벌 생태계조사 및 지속가능한 이용방안 연구- 함평만 갯벌을 중심으로.
  5. 환경부. 2004. 장기생태연구 시범사업 연구보고서.
  6. Admiraal W and H Peletier. 1980. Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms. Mar. Ecol. Prog. Ser. 2:35-43. https://doi.org/10.3354/meps002035
  7. Archambault P and E Bourget. 1999. Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruitment and diversity of benthic subtidal communities. Exp. Mar. Biol. Ecol. 238:161-184. https://doi.org/10.1016/S0022-0981(98)00146-4
  8. Boschker HTS, JFC de Brouwer and TE Cappenberg. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44:309-319. https://doi.org/10.4319/lo.1999.44.2.0309
  9. Broitman BR, SA Navarrete, F Smith and SD Gaines. 2001. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224:21-34. https://doi.org/10.3354/meps224021
  10. Colijn F and KS Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 4: 9-21. https://doi.org/10.3354/meps004009
  11. Dawes CJ. 2005. Marine Botany, 2nd Ed. John Wiley and Sons Inc, New York.
  12. de Jonge VN and JEE van Beusekom. 1995. Wind- and tideinduced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40: 766-778.
  13. Folk RL. 1966. A review of grain-size parameters. Sedimentology 6:73-93. https://doi.org/10.1111/j.1365-3091.1966.tb01572.x
  14. Hopkins JT. 1964. A study of the diatoms of the Ouse Estuary, Sussex II. The ecology of the mud-flat diatom flora. J. Mar. Biol. Ass. U.K. 44:333-341. https://doi.org/10.1017/S0025315400024863
  15. Hopner T and K Wonneberger. 1985 Examination of the connection between the patchiness of .benthic nutrient efflux and epiphytobenthos patchiness on intertidal flats. Netherlands J. Sea Res. 19:277-285. https://doi.org/10.1016/0077-7579(85)90034-1
  16. Kendrick GA, LS Langtry, J Fitzpatrick, R Griffiths and CA Jacoby. 1998. Benthic microalgae and nutrient dynamics in wave- disturbed environments in Marmion Lagoon, Western Australia, compared with less disturbed mesocosms. Exp. Mar. Biol. Ecol. 228:83-105. https://doi.org/10.1016/S0022-0981(98)00011-2
  17. Levinton JS. 2001. Marine Biology: Function, Biodiversity and Ecology, 2nd Ed. Oxford University Press, Oxford.
  18. Lorenzen CJ. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12:343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  19. Lucas CH, C Banham and PM Holligan. 2000. Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Mar. Ecol. Prog. Ser. 196:59-73. https://doi.org/10.3354/meps196059
  20. Lucas CH, C Banham and PM Holligan. 2001. Benthic-pelagic exchange of microalgae at a tidal flat. 2. Taxonomic analysis. Mar. Ecol. Prog. Ser. 212:39-52. https://doi.org/10.3354/meps212039
  21. Mulamoottil G, BG Warner and EA McBean. 1996. Wetlands - Environmental gradients, boundaries, and buffers. Lewis Publishers, London.
  22. Nobel PS. 2010. Physicochemical and environmental plant physiology, 4th Ed. Academic Press.
  23. Pinckney J, Y Piceno and CR Lovell. 1994. Short-term changes in the vertical distribution of benthic microalgal biomass in intertidal muddy sediments. Diatom Res. 9:143-153. https://doi.org/10.1080/0269249X.1994.9705293
  24. Rizzo W. 1990. Nutrient exchanges between the water column and a subtidal benthic microalgal community. Estuaries 13:219-226.
  25. Sand-Jensen K and J Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41:137-175. https://doi.org/10.1016/0304-3770(91)90042-4
  26. Sze P. 1998. A Biology of the Algae. WCB McGraw-Hill, Boston.
  27. Teal JM. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:473-490. https://doi.org/10.2307/1933375
  28. Valiela I and JM Teal. 1979. Nitrogen budget of a salt marsh ecosystem. Nature 280:702-724. https://doi.org/10.1038/280702a0
  29. Wetzel RG and GE Likens. 2000. Limnological Analysis, Springer- Verlag.