DOI QR코드

DOI QR Code

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo (DEPARTMENT OF MATHEMATICS MARITIME FACULTY UNIVERSITY OF MONTENEGRO) ;
  • Pavicevic, Zarko (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITY OF MONTENEGRO)
  • Received : 2009.10.30
  • Published : 2011.03.01

Abstract

In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

References

  1. J. S. Choa and H. O. Kim, Composition operators on some F-algebras of holomorphic functions, Nihonkai Math. J. 7 (1996), no. 1, 29-39.
  2. P. L. Duren, Theory of $H^{p}$ Spaces, Academic Press, New York, 1970.
  3. P. L. Duren, Smootheness of functions generated by Riesz products, Proc. Amer. Math. Soc. 16 (1965), 1263-1268.
  4. P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32-60.
  5. C. M. Eoff, Frechet envelopes of certain algebras of analytic functions, Michigan Math. J. 35 (1988), no. 3, 413-426. https://doi.org/10.1307/mmj/1029003822
  6. C. M. Eoff, A representation of $N_{\alpha}^{+}$ as a union of weighted Hardy spaces, Complex Variables Theory Appl. 23 (1993), no. 3-4, 189-199. https://doi.org/10.1080/17476939308814684
  7. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  8. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
  9. K. Hoffman, Banach Spaces of Analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
  10. J. L. Kelley, I. Namioka et al., Linear Topological Spaces, D. Van Nostrand Co., Inc., Princeton, N.J. 1963.
  11. E. Landau, Darstellung und Begrundung einiger neurer Ergebnisse der Funktiontheorie, Springer, Berlin, 1929.
  12. Y. Matsugu, Invariant subspaces of the Privalov spaces, Far East J. Math. Sci. (FJMS) 2 (2000), no. 4, 633-643.
  13. R. Mestrovic and Z. Pavicevic, The logarithmic analogue of Szego's theorem, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 97-102.
  14. R. Mestrovic and A. V. Subbotin, Multipliers and linear functionals of I. I. Privalov spaces of functions holomorphic in the disk, Dokl. Akad. Nauk 365 (1999), no. 4, 452- 454.
  15. J. E. McCarthy, Topologies on the Smirnov class, J. Funct. Anal. 104 (1992), no. 1, 229-241. https://doi.org/10.1016/0022-1236(92)90096-2
  16. N. Mochizuki, Algebras of holomorphic functions between $H^{p}$ and $N_{*}$, Proc. Amer. Math. Soc. 105 (1989), no. 4, 898-902.
  17. I. I. Privalov, Boundary properties of Analytic Functions, Moscow University Press, Moscow, 1950.
  18. F. Riesz, Uber die Fourierkoeffizienten einer stetigen Funktion von beschrankter Schwankung, Math. Z. 2 (1918), 312-315. https://doi.org/10.1007/BF01199414
  19. J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra $N^{+}$, Arch. Math. (Basel) 27 (1976), no. 4, 387-393; Correction, Arch. Math. (Basel) 30 (1978), 672. https://doi.org/10.1007/BF01224691
  20. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), no. 1, 187-202. https://doi.org/10.1215/S0012-7094-76-04316-7
  21. M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977/78), no. 2, 139-158.
  22. A. Wilansky, Topology for Analysis, Ginn and Co., Waltham, 1970.
  23. N. Yanagihara, Multipliers and linear functionals for the class $N^{+}$, Trans. Amer. Math. Soc. 180 (1973), 449-461.
  24. N. Yanagihara,The containing Frechet space for the class $N^{+}$, Duke Math. J. 40 (1973), 93-103. https://doi.org/10.1215/S0012-7094-73-04010-6
  25. A. I. Zayed, Topological vector spaces of analytic functions, Complex Variables Theory Appl. 2 (1983), no. 1, 27-50. https://doi.org/10.1080/17476938308814030
  26. A. I. Zayed,Recoverability of some classes of analytic functions from their boundary values, Proc. Amer. Math. Soc. 87 (1983), no. 3, 493-498. https://doi.org/10.1090/S0002-9939-1983-0684645-X
  27. A. Zygmund, Trigonometric Series. 2nd ed. Vols. I, II, Cambridge University Press, New York 1959.

Cited by

  1. Topological and Functional Properties of SomeF-Algebras of Holomorphic Functions vol.2015, 2015, https://doi.org/10.1155/2015/850709
  2. OnF-AlgebrasMp  (1https://doi.org/10.1155/2014/901726