DOI QR코드

DOI QR Code

PKC inhibitors RO 31-8220 and Gö 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation

  • Received : 2010.12.09
  • Accepted : 2011.01.18
  • Published : 2011.02.28

Abstract

Impaired responsiveness of platelets to epinephrine (epi) and other catecholamines (CA) has been reported in approximately 20% of the healthy Korean and Japanese populations. In the present study, platelet aggregation induced by epi was potentiated by RO 31-8220 (RO) or G$\ddot{o}$ 6983 (G$\ddot{o}$). Phosphorylated Akt (p-Akt) was very low in epi-stimulated PRP from CA-hypo- responders (CA-HY), whereas it was detected in those from CA-good responders (CA-GR). RO and G$\ddot{o}$ increased p-Akt, one of the major downstream effectors of phosphoinositol-3 kinase (PI3K), in epi-stimulated PRP from both groups. Wortmannin, a PI3K inhibitor, attenuated the RO or G$\ddot{o}$-induced potentiation of p-Akt in epi-stimulated PRP, suggesting positive effects for RO and G$\ddot{o}$ on PI3K. $TXA_2$ formation was increased by the addition of either RO or G$\ddot{o}$ in epi-stimulated platelets. The present data also suggest that impaired Akt phosphorylation may be responsible for epinephrine hypo-responsiveness of platelets.

Keywords

Akt;Epinephrine;G$\ddot{o}$ 6983;Platelet aggregation;RO 31-8220

References

  1. Siess, W. (1989) Molecular mechanisms of platelet activation. Physiol. Rev. 69, 58-178. https://doi.org/10.1152/physrev.1989.69.1.58
  2. Packham, M. A. (1994) Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharmacol. 72, 278-284. https://doi.org/10.1139/y94-043
  3. Holmsen, H. (1991) Signal transducing mechanisms in platelets. Proc. Natl. Sci. Counc. Repub. China B. 15, 147-152.
  4. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. and Sporn, M. B. (1983) Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J. Biol. Chem. 258, 7155-7160.
  5. Chen, J., De, S., Damron, D. S., Chen, W. S., Hay, N. and Byzova, T. (2004) Imparied platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 104, 1703-1710. https://doi.org/10.1182/blood-2003-10-3428
  6. Kambayashi, J., Shinoki, N., Nakamura, T., Ariyoshi, H.,Kawasaki, T., Sakon, M. and Monden, M. (1996) Prevalence of impaired responsiveness to epinephrine in platelets among Japanese. Throm. Res. 81, 85-90. https://doi.org/10.1016/0049-3848(95)00216-2
  7. Pyo, M. K., Yun-Choi, H. S. and Hong, Y. J. (2003) Apparent heterogeneous responsiveness of human platelet rich plasma to catecholamines. Platelets. 14, 171-178. https://doi.org/10.1080/0953710031000092785
  8. Kim, J. M., Koo, Y. K., Heo, J. E., Park, S. and Yun-Choi, H. S. (2009) Reduced GPIIb/IIIa expression in platelets hyposensitive to catecholamines when activated with TRAP. Throm. Res. 124, 90-95. https://doi.org/10.1016/j.thromres.2008.12.046
  9. Nakahashi, T. K., Kambayashi, J., Nakamura, T., Le, S. N., Yoshitake, M., Tandon, N. N. and Sun, B. (2001) Platelets in nonresponders to epinephrine stimulation showed reduced response to ADP. Throm. Res. 104, 127-135. https://doi.org/10.1016/S0049-3848(01)00354-1
  10. Koo, Y. K., Kim, J. M., Kim, S. Y., Koo, J. Y., Oh, D., Park, S. and Yun-choi, H. S. (2009) Elevated plasma concentration of NO and cGMP may be responsible for the decreased platelet aggregation and platelet leukocyte conjugation in platelets hypo-responsive to catecholamines. Platelets. 20, 555-565. https://doi.org/10.3109/09537100903337419
  11. Paul, B. Z. S., Jin, J. and Kunapuli, S. P. (1999) Molecular mechanism of thromboxane $A_2$-induced platelet aggregation. Essential role for P2Tac and $\alpha_{2A}$-receptor. J. Biol. Chem. 274, 29108-29114. https://doi.org/10.1074/jbc.274.41.29108
  12. Keularts, I. M., van Gorp, R. M., Feijge, M. A., Vuist, W. M. and Heemskerk, J. W. (2000) $\alpha_{2A}$-Aderenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. J. Biol. Chem. 275, 1763-1772. https://doi.org/10.1074/jbc.275.3.1763
  13. Anfossi, G. and Trovati, M. (1996) Role of catecholamines in platelet function: pathophysiological and clinical significance. Eur. J. Clin. Invest. 26, 353-370. https://doi.org/10.1046/j.1365-2362.1996.150293.x
  14. Dorsam, R. T. and Kunapuli, S. P. (2004) Central role of the $P2Y_{12}$ receptor in platelet activation. J. Clin. Invest. 113, 340-345. https://doi.org/10.1172/JCI20986
  15. Shah, B. H. and Saeed, S. A. (1995) Phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits 5-hydroxytryptamine-mediated potentiation of platelet aggregation induced by epinephrine. Res. Commun. Mol. Pathol. Pharmacol. 89, 157-164.
  16. Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M. and Samuelsson, B. (1987) Identification of an enzyme in platelet microsomes which generates thromboxane $A_2$ from prostaglandin endoperoxides. Nature 261, 558-560.
  17. Sheu, J. R., Yeh, G. C., Fang, C. L., Lin, C. H. and Hsiao, G. (2002) Morphine-potentiated agonist-induced platelet aggregation though $a_2$-adrenoceptors in human platelets. J. Cardiovasc. Pharmacol. 40, 743-750. https://doi.org/10.1097/00005344-200211000-00012
  18. Shah, B. H., Shamim, G., Khan, S. and Saeed, S. A. (1996) Protein kinase C inhibitor, chelerythrine, potentiates the adrenaline-mediated aggregation of human platelets through calcium influx. Biochem. Mol. Biol. Int. 38, 1135-1141.
  19. Soltoff, S. P. (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKC $\delta$. Trends Pharmacol. Sci. 28, 453-458. https://doi.org/10.1016/j.tips.2007.07.003
  20. London, F. S. (2003) The protein kinase C inhibitor RO 318220 potentiates thrombin-stimulated platelet-supported prothrombinase activity. Blood 102, 2472-2481. https://doi.org/10.1182/blood-2003-03-0734
  21. Strehl, A., Munnix, I. C., Kuijpers, M. J., van der Meijden, P. E., Cosemans, J. M., Feijqe, M. A., Nieswandt, B. and Heemskerk, J. W. (2007) Dual role of platelet protein kinase C in thrombus formation: stimulation of pro-aggregatory and suppression of procoagulant activity in platelets. J. Biol. Chem. 282, 7046-7055. https://doi.org/10.1074/jbc.M611367200
  22. Dorsam, R. T., Kim, S., Murugappan, S., Rachoor, S., Shanker, H., Jin, J. and Kunapuli, S. P. (2005) Differential requirements for calcium and Src family kinases in platelet GPIIb/IIIa activation and thromboxane generation downstream of different G-protein pathways. Blood 105, 2749-2756. https://doi.org/10.1182/blood-2004-07-2821
  23. Kauffenstein, G., Bergmeier, W., Eckly, A., Ohlmann, P., Leon, C., Cazenave, J. P., Nieswandt, B. and Gachet, C. (2001) The $P2Y_{(12)}$ receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin-a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett. 505, 281-290. https://doi.org/10.1016/S0014-5793(01)02824-1
  24. Yin, H., Stojanovic, A., Hay, N. and Du, X. (2008) The role of Akt in the signaling pathway of the glycoprotein Ib-IX induced platelet activation. Blood 111, 658-665. https://doi.org/10.1182/blood-2007-04-085514
  25. Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced latelet aggregation by nitroprusside. Br. J. Haemotol. 117, 664-675. https://doi.org/10.1046/j.1365-2141.2002.03479.x
  26. Swart, S. S., Maguire, M., Wood, J. K. and Barnett, D. B. (1985) Alpha 2-adrenoceptor coupling to adenylate cyclase in adrenaline insensitive human platelet. Eur. J. Pharmacol. 116, 113-119. https://doi.org/10.1016/0014-2999(85)90191-8
  27. Nakamura, T., Ariyoshi, H., Kambayashi, J., Ikeda, M., Shinoki, N., Kawasaki, T. and Monden, M. (1997) Signal transduction system in epinephrine stimulated platelets; comparison between epinephrine sensitive and insensitive platelets. Throm. Res. 85, 83-93. https://doi.org/10.1016/S0049-3848(96)00225-3
  28. Kim, S., Jin, J. and Kunapuli, S. P. (2004) Akt activation in platelets depends on $G_i$ signaling pathways. J. Biol. Chem. 279, 4186-4195. https://doi.org/10.1074/jbc.M306162200
  29. McNicol A. (1996) Platelet preparation and estimation of functional response; in Platelets-A Practical Approach. (Watson, S. P. and Authi, K. S., eds.), pp 1–13, Oirl Press at Oxford University Press, New York, U.S.A.

Cited by

  1. Antiplatelet and antithrombotic activities of purpurogallin in vitro and in vivo vol.47, pp.7, 2014, https://doi.org/10.5483/BMBRep.2014.47.7.195
  2. Synthesis and Thrombin, Factor Xa and U46619 Inhibitory Effects of Non-Amidino and Amidino N2-Thiophenecarbonyl- and N2-Tosylanthranilamides vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061144
  3. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa vol.37, pp.11, 2014, https://doi.org/10.1007/s12272-014-0403-8
  4. Synthesis and in Vitro and in Vivo Anticoagulant and Antiplatelet Activities of Amidino- and Non-Amidinobenzamides vol.21, pp.5, 2016, https://doi.org/10.3390/molecules21050676
  5. The non-genomic rapid acidification in peripheral T cells by progesterone depends on intracellular calcium increase and not on Na+/H+-exchange inhibition vol.77, pp.10, 2012, https://doi.org/10.1016/j.steroids.2012.03.004
  6. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe) vol.21, pp.6, 2017, https://doi.org/10.1111/jcmm.13055
  7. Antithrombotic Activities of Epi-Sesamin in vitro and in vivo vol.41, pp.06, 2013, https://doi.org/10.1142/S0192415X13500882
  8. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo vol.17, 2015, https://doi.org/10.1016/j.jff.2015.05.037
  9. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans vol.6, pp.1, 2016, https://doi.org/10.1038/srep21956
  10. Antithrombotic and antiplatelet activities of vicenin-2 vol.26, pp.6, 2015, https://doi.org/10.1097/MBC.0000000000000320
  11. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation vol.98, 2014, https://doi.org/10.1016/j.fitote.2014.07.006
  12. Antithrombotic activities of oroxylin A in vitro and in vivo vol.37, pp.5, 2014, https://doi.org/10.1007/s12272-013-0233-0
  13. Anti-factor Xa activities of zingerone with anti-platelet aggregation activity vol.105, 2017, https://doi.org/10.1016/j.fct.2017.04.012
  14. Evaluation of novel factor Xa inhibitors from Oxya chinensis sinuosa with anti-platelet aggregation activity vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-08330-1
  15. Antithrombotic activities of pellitorine in vitro and in vivo vol.91, 2013, https://doi.org/10.1016/j.fitote.2013.08.004
  16. Antitcoagulant and antiplatelet activities of scolymoside vol.48, pp.10, 2015, https://doi.org/10.5483/BMBRep.2015.48.10.044
  17. Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A vol.60, pp.3, 2014, https://doi.org/10.1016/j.vph.2014.01.009
  18. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A vol.37, pp.8, 2014, https://doi.org/10.1007/s12272-013-0290-4
  19. Anticoagulant activities of piperlonguminine in vitro and in vivo vol.46, pp.10, 2013, https://doi.org/10.5483/BMBRep.2013.46.10.028
  20. Antiplatelet activities of hyperosidein vitroandin vivo vol.18, pp.3, 2014, https://doi.org/10.1080/19768354.2014.925970
  21. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin vol.38, pp.5, 2015, https://doi.org/10.1007/s12272-014-0410-9
  22. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa vol.38, pp.6, 2015, https://doi.org/10.1007/s12272-014-0501-7

Acknowledgement

Supported by : Korea Science and Engineering Foundation