DOI QR코드

DOI QR Code

Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction

  • Zeinali-Dastmalbaf, Mohsen (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Davoodnia, Abolghasem (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Heravi, Majid M. (Department of Chemistry, School of Sciences, Azzahra University) ;
  • Tavakoli-Hoseini, Niloofar (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Khojastehnezhad, Amir (Department of Chemistry, Faculty of Sciences, Mashhad Branch, Islamic Azad University) ;
  • Zamani, Hassan Ali (Department of Applied Chemistry, Quchan Branch, Islamic Azad University)
  • Received : 2010.11.13
  • Accepted : 2010.12.18
  • Published : 2011.02.20

Abstract

A green and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones through one-pot three-component reaction of ethyl acetoacetate, an aryl aldehyde, and urea or thiourea in acetonitrile using silica gel-supported polyphosphoric acid (PPA-$SiO_2$) as catalyst is described. Compared to the classical Biginelli reaction conditions, the present methodology offers several advantages such as high yields, relatively short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

Keywords

Biginelli reaction;Heterogeneous catalysis;PPA-$SiO_2$;Multi-component reactions

References

  1. Yu, L.; Chen, B.; Huang, X. Tetrahedron Lett. 2007, 48, 925. https://doi.org/10.1016/j.tetlet.2006.12.026
  2. Strubing, D.; Neumann, H.; Klaus, S.; Hubner, S.; Beller, M. Tetrahedron 2005, 61, 11333. https://doi.org/10.1016/j.tet.2005.09.097
  3. Heydari, A.; Arefi, A.; Khaksar, S.; Shiroodi, R. K. J. Mol. Catal. A: Chem. 2007, 271, 142. https://doi.org/10.1016/j.molcata.2007.02.046
  4. Kappe, C. O.; Fabian, W. W. Tetrahedron 1997, 53, 2803. https://doi.org/10.1016/S0040-4020(97)00022-7
  5. Mayer, T. U.; Tapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Science 1999, 286, 971. https://doi.org/10.1126/science.286.5441.971
  6. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. https://doi.org/10.1016/S0223-5234(00)01189-2
  7. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Dimarco, D. J.; Gougoutas, J.; Hedberg, A.; Malley, M.; Mccarthy, J. P.; Zhang, R.; Mareland, S. J. Med. Chem. 1995, 38, 119. https://doi.org/10.1021/jm00001a017
  8. Grover, G. J.; Dzwomczyk, S.; Mcmullen, D. M.; Normadinam, C. S.; Sleph, P. G.; Moreland, S.; Cardiovasc, J. Pharmacol. 1995, 26, 289.
  9. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
  10. Barluenga, J.; Thomas, M.; Ballesterus, A.; Lopez, A. Tetrahedron Lett. 1989, 30, 4573. https://doi.org/10.1016/S0040-4039(01)80748-6
  11. Gupta, R.; Gupta, A. K.; Paul, S.; Kachroo, P. L. Indian J. Chem. Sect. B 1995, 34B, 151.
  12. Yadav, J. S.; Reddy, B. V. S.; Reddy, E. J.; Ramalingam, T. J. Chem. Res. (S) 2000, 354.
  13. Tu, S.; Fang, F.; Miao, C.; Jiang, H.; Feng, Y.; Shi, D.; Wang, X. Tetrahedron Lett. 2003, 44, 6153. https://doi.org/10.1016/S0040-4039(03)01466-7
  14. Jin, T.; Zhang, S.; Li, T. Synth. Commun. 2002, 32, 1847. https://doi.org/10.1081/SCC-120004068
  15. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi Fard, M. A. Tetrahedron Lett. 2003, 44, 2889. https://doi.org/10.1016/S0040-4039(03)00436-2
  16. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864. https://doi.org/10.1021/jo9919052
  17. Su, W.; Li, J.; Zheng, Z.; Shen, Y. Tetrahedron Lett. 2005, 46, 6037. https://doi.org/10.1016/j.tetlet.2005.07.021
  18. Heravi, M. M.; Behbahani, F. K.; Oskooie, H. A. Chin. J. Chem. 2008, 26, 2203. https://doi.org/10.1002/cjoc.200890392
  19. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801. https://doi.org/10.1016/S0040-4020(02)00455-6
  20. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. https://doi.org/10.1021/jo000711f
  21. Varala, R.; Alam, M. M.; Adapa, S. R. Synlett 2003, 67.
  22. Hajipour, A. R.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 8307. https://doi.org/10.1016/j.tetlet.2005.09.178
  23. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
  24. Shaterian, H. R.; Hosseinian, A.; Ghashang, M. Arkivoc. 2009, Part 2, 59.
  25. Davoodnia, A.; Bakavoli, M.; Vahedinia, A.; Rahimizadeh, M.; Roshani, M. Heterocycles 2006, 68, 801. https://doi.org/10.3987/COM-06-10669
  26. Davoodnia, A.; Bakavoli, M.; Pooryaghoobi, N.; Roshani, M. Heterocycl. Commun. 2007, 13, 323-325.
  27. Davoodnia, A.; Roshani, M.; Saleh-Nadim, E.; Bakavoli, M.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1327-1330. https://doi.org/10.1016/j.cclet.2007.09.004
  28. Davoodnia, A.; Behmadi, H.; Zare-Bidaki, A.; Bakavoli, M.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1163. https://doi.org/10.1016/j.cclet.2007.07.024
  29. Davoodnia, A.; Bakavoli, M.; Mohseni, Sh.; Tavakoli-Hoseini, N. Monatsh. Chem. 2008, 139, 963. https://doi.org/10.1007/s00706-007-0844-6
  30. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
  31. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
  32. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  33. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
  34. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  35. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
  36. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
  37. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  38. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  39. Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
  40. Aoyama, T.; Takido, T.; Kodomari, M. Synlett. 2004, 13, 2307.

Cited by

  1. ): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2385
  2. ] as a Recyclable Catalyst vol.41, pp.9, 2011, https://doi.org/10.1080/15533174.2011.591358
  3. ChemInform Abstract: Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction. vol.42, pp.27, 2011, https://doi.org/10.1002/chin.201127173
  4. Aluminium Nitrate Nonahydrate (Al(NO3)3⋅9 H2O): An Efficient Oxidant Catalyst for the One-Pot Synthesis of Biginelli Compounds from Benzyl Alcohols vol.95, pp.1, 2012, https://doi.org/10.1002/hlca.201100242
  5. Recent progress in asymmetric Biginelli reaction vol.17, pp.2, 2013, https://doi.org/10.1007/s11030-013-9439-9
  6. Microwave-Assisted Synthesis and Biological Evaluation of Dihydropyrimidinone Derivatives as Anti-Inflammatory, Antibacterial, and Antifungal Agents vol.2013, pp.2090-2077, 2013, https://doi.org/10.1155/2013/197612
  7. )-ones Both under Reflux or Solvent-Free Conditions vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/325268
  8. Microwave-Assisted Synthesis of Spirofused Heterocycles Using Decatungstodivanadogermanic Heteropoly Acid as a Novel and Reusable Heterogeneous Catalyst under Solvent-Free Conditions vol.2013, pp.2314-5110, 2013, https://doi.org/10.1155/2013/392162
  9. ] as a Reusable Heterogeneous Catalyst vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1508
  10. Novel and Chemoselective Dehydrogenation of 3,4-Dihydropyrimidin-2(1H)-ones with 1,4-Bis(triphenylphosphonium)-2-butene Peroxodisulfate vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1751
  11. Alumina Supported Acidic Ionic Liquid: Preparation, Characterization, and Its Application as Catalyst in the Synthesis of 1,8-dioxo-octahydroxanthenes vol.43, pp.9, 2013, https://doi.org/10.1080/15533174.2012.756897
  12. A Green Recyclable Poly(4-vinylpyridine)-Supported Copper Iodide Nanoparticles Catalyst for the Multicomponent Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones vol.57, pp.2, 2013, https://doi.org/10.5012/jkcs.2013.57.2.169
  13. Extraordinary catalytic activity of a Keplerate-type giant nanoporous isopolyoxomolybdate in the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxodecahydroacridines vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1861-9
  14. A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1356-0
  15. PPA-SiO2 catalyzed solvent-free synthesis of some novel 4,6-diaryl-2,3a,4,5-tetrahydro-3H-indazol-3-ones from 3,5-diaryl-6-carbethoxy cyclohexenones vol.41, pp.6, 2015, https://doi.org/10.1007/s11164-013-1446-z
  16. Atom-economy click synthesis of tetrahydrobenzo[b]pyrans using carbon-based solid acid as a novel, highly efficient and reusable heterogeneous catalyst vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1536-6
  17. Synthesis of podands with dihydropyrimidine fragments based on polyethers with terminal acetoacetamide groups vol.51, pp.5, 2015, https://doi.org/10.1007/s10593-015-1723-4
  18. Sulfated polyborate: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via Biginelli reaction vol.40, pp.12, 2016, https://doi.org/10.1039/C6NJ03120J
  19. ]pyrans in Water vol.48, pp.4, 2016, https://doi.org/10.1080/00304948.2016.1194127
  20. Neat synthesis of octahydroxanthene-1,8-diones, catalyzed by silicotungstic acid as an efficient reusable inorganic catalyst vol.86, pp.5, 2016, https://doi.org/10.1134/S107036321605025X
  21. Phosphorous acid functionalized polyacrylonitrile fibers with a polarity tunable surface micro-environment for one-pot C–C and C–N bond formation reactions vol.19, pp.24, 2017, https://doi.org/10.1039/C7GC02935G
  22. Synthesis of Highly Functionalized Piperidines Using Polyphosphoric Acid Supported on Silica-coated Magnetic Nanoparticles vol.49, pp.4, 2017, https://doi.org/10.1080/00304948.2017.1342505
  23. Biginelli reaction – an effective method for the synthesis of dihydropyrimidine derivatives (microreview) vol.53, pp.4, 2017, https://doi.org/10.1007/s10593-017-2067-z
  24. Evaluation of catalytic activity of two newly prepared functionalized sulfonic acids ionic liquids in the synthesis of carbamatoalkyl naphthols under mild conditions vol.87, pp.2, 2017, https://doi.org/10.1134/S1070363217020268
  25. Synthesis of Pyrazolo[3,4-d]pyrimidin-4-ones Catalyzed by Br?nsted-acidic Ionic Liquids as Highly Efficient and Reusable Catalysts vol.29, pp.11, 2011, https://doi.org/10.1002/cjoc.201180411
  26. Highly efficient, green, rapid, and chemoselective oxidation of sulfur-containing compounds in the presence of an MCM-41@creatinine@M (M = La and Pr) mesostructured catalyst under neat conditions vol.42, pp.7, 2018, https://doi.org/10.1039/C7NJ05189A