DOI QR코드

DOI QR Code

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2010.11.29
  • Accepted : 2010.12.13
  • Published : 2011.02.20

Abstract

Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

References

  1. O’Reagen, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338.
  3. Gratzel, M. J. Photochem. Photobiol. A: Chem. 2004, 164, 3. https://doi.org/10.1016/j.jphotochem.2004.02.023
  4. Nogueira, A. F.; Durrant, J. R.; De Paoli, M.-A. Adv. Mater. 2001, 13, 826. https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L
  5. Stergiopoulos, T.; Arabatzis, I. M.; Katsaros, G.; Falaras, P. Nano Lett. 2002, 2, 1259. https://doi.org/10.1021/nl025798u
  6. Murai, S.; Mikoshiba, S; Sumino, H.; Hayase, S. J. Photochem. Photobiol. A: Chem. 2002, 148, 33. https://doi.org/10.1016/S1010-6030(02)00046-1
  7. Kim, Y. J.; Kim, J. H.; Kang, M. S.; Lee, M. J.; Won, J.; Lee, J. C.; Kang, Y. S. Adv. Mater. 2004, 16, 1753. https://doi.org/10.1002/adma.200306664
  8. Kim, D. W.; Jeong, Y. B.; Kim, S. H.; Lee, D. Y.; Song, J. S. J. Power Sources 2005, 149, 112. https://doi.org/10.1016/j.jpowsour.2005.01.058
  9. Kim, K. M.; Park, N. G.; Kang, M. G.; Ryu, K. S; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 322. https://doi.org/10.5012/bkcs.2006.27.2.322
  10. Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M. R.; Lee, J. K.; Jin, S. H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33. https://doi.org/10.5012/bkcs.2007.28.1.033
  11. Shim, H. J.; Kim, D. W.; Lee, C.; Kang, Y.; Suh, D. H. Macromol. Res. 2007, 16, 424.
  12. Kim, S. R.; Parvez, M. K.; In, I.; Lee, H. Y.; Park, J. M. Electrochim. Acta 2009, 54, 6306. https://doi.org/10.1016/j.electacta.2009.05.077
  13. Lim, S. J.; Kang, Y. S.; Kim, D. W. Electrochem. Commun. 2010, 12, 1037. https://doi.org/10.1016/j.elecom.2010.05.018
  14. Kumara, G. R. A.; Kaneko, S.; Okuya, M.; Tennakone, K. Langmuir 2002, 18, 10493. https://doi.org/10.1021/la020421p
  15. Hagen, J.; Schaffrath, W.; Otschik, P.; Fink, R.; Bacher, A.; Schmidt, H.-W. Synth. Met. 1997, 89, 215. https://doi.org/10.1016/S0379-6779(97)81221-0
  16. Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Sol. Energy Mater. Sol. Cells 1998, 55, 113. https://doi.org/10.1016/S0927-0248(98)00052-X
  17. Kim, D. W.; Oh, B.; Park, J. H.; Sun, Y. K. Solid State Ionics 2000, 138, 41. https://doi.org/10.1016/S0167-2738(00)00763-3
  18. Kim, D. W.; Ko, J. M.; Chun, J. H.; Kim, S. H.; Park, J. K. Electrochem. Commun. 2001, 3, 535. https://doi.org/10.1016/S1388-2481(01)00214-4
  19. Song, M. K.; Kim, Y. T.; Cho, J. Y.; Cho, B. W.; Popov, B. N.; Rhee, H. W. J. Power Sources 2004, 125, 10. https://doi.org/10.1016/S0378-7753(03)00826-7
  20. Jeong, Y. B.; Kim, D. W. J. Power Sources 2004, 128, 256. https://doi.org/10.1016/j.jpowsour.2003.09.073
  21. Wang, H.; Li, H.; Xue, B.; Wang, Z.; Meng, Q.; Chen, L. J. Am. Chem. Soc. 2005, 127, 6394. https://doi.org/10.1021/ja043268p
  22. Kang, M. S.; Kim, J. H.; Won, J.; Kang, Y. S. J. Phys. Chem. C 2007, 111, 5222. https://doi.org/10.1021/jp067621k
  23. Kim, D. W.; Sun, Y. K. J. Electrochem. Soc. 1998, 145, 1958. https://doi.org/10.1149/1.1838582
  24. Liu, Y.; Hagfeldt, A.; Xiao, X.-R.; Lindquist, S.-E. Sol. Energy Mater. Sol. Cells 1998, 55, 267. https://doi.org/10.1016/S0927-0248(98)00111-1
  25. Scully, S. R.; Lloyd, M. T.; Herrera, R.; Giannelis, E. P.; Malliaras, G. G. Synth. Met. 2004, 144, 291. https://doi.org/10.1016/j.synthmet.2004.04.011
  26. Zhang, X.; Yang, H.; Xiong, H. M.; Li, F. Y.; Xia, Y. Y. J. Power Sources 2006, 160, 1451. https://doi.org/10.1016/j.jpowsour.2006.03.008
  27. Wei, T. C.; Wan, C. C.; Wang, Y. Y. Sol. Energy Mater. Sol. Cells 2007, 91, 1892. https://doi.org/10.1016/j.solmat.2007.07.005
  28. Priya, A. R. S.; Subramania, A.; Jung, Y. S.; Kim, K. J. Langmuir 2008, 24, 9816. https://doi.org/10.1021/la801375s
  29. Suresh, T.; Joseph, J.; Son, K. M.; Vittal, R.; Lee, J.; Kim, K. J. Sol. Energy Mater. Sol. Cells 2007, 91, 1313. https://doi.org/10.1016/j.solmat.2007.04.030

Cited by

  1. composite membrane vol.131, pp.22, 2014, https://doi.org/10.1002/app.41107
  2. Polymer electrolyte developed from natural rubber-polyacrylic acid co trimethoxysilyl propyl methacrylate grafted fumed silica and its application to dye sensitized solar cell pp.02728397, 2017, https://doi.org/10.1002/pc.24648
  3. Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode vol.10, pp.8, 2018, https://doi.org/10.3390/polym10080853