DOI QR코드

DOI QR Code

Association of Single Nucleotide Polymorphism (SNP) in the PGK 2 Gene with Growth Traits in Pigs

돼지 PGK 2 유전자의 단일염기다형성 및 성장 형질과의 연관성 구명

  • 장홍철 (농촌진흥청 국립축산과학원) ;
  • 김상욱 (충북대학교 축산학과) ;
  • 임다정 (농촌진흥청 국립축산과학원) ;
  • 김재영 (농촌진흥청 국립축산과학원) ;
  • 조규호 (농촌진흥청 국립축산과학원) ;
  • 김명직 (농촌진흥청 국립축산과학원) ;
  • 이지웅 (전남대학교 동물자원학부) ;
  • 최봉환 (농촌진흥청 국립축산과학원) ;
  • 김태헌 (농촌진흥청 국립축산과학원)
  • Received : 2010.08.24
  • Accepted : 2010.12.02
  • Published : 2011.02.28

Abstract

The purpose of this study was to analyse of association between growth traits and single nucleotide polymorphisms (SNPs) polymorphism of phosphoglycerate kinase 2 (PGK 2) gene in pigs. The birth weight of piglet influences on weaning weight and survival rate that are import economic traits in pig industry. Also, these growth traits are representative factor to decrease a period getting to marketing weight as well as growth rate in pig. The PGK 2 is an isozyme that catalyzes the first ATP-generating step in the glycolytic pathwayand important enzyme related with energy metabolism. Twenty of SNPs were discoveredby genome structure analysis that compares the sequence on promoter and transcription region of PGK 2 gene in porcine chromosome 7. An association between PGK 2 SNPs and growth traits was analyzed in $F_2$ reciprocal-crossbred population between korean native pig (KNP) and Landrace. Association analysis indicated that polymorphism of the PGK 2 gene promoter region has significant effects on weight at birth (p<0.01) and weight at 3 weeks of age (p<0.0001). These results suggest that PGK 2 gene polymorphism was associated with energy metabolism and physiological function of growth in pig.

Acknowledgement

Grant : DNA마커 도움선발(MAS, Marker-Assisted Selection)을 이용한 한국 재래돼지 개량과 상업적 비육 흑돼지 계통조성

Supported by : 농촌진흥청

References

  1. Andersson, L., Haley, C. S., Ellergren, H., Knott, S. A., Johansson, M., Andersson, K., Andersson-Eklund, L., Edfor-Lilja, I., Fredholm, M., Hansson, I., Hakansson, J. and Lundstrom, K. 1994. Genetic mapping of quantitative loci for growth and fatness in pigs. Science. 263:1771-1774. https://doi.org/10.1126/science.8134840
  2. Anonymous. 2000. Nutrition's Feed Evaluation Unit in Pig. SCA Corp., U.S.A.
  3. Boer, P. H., Adra, C. N., Lau, Y. F. and McBurney, M. W. 1987. The testis-specific phosphoglycerate kinase gene PGK-2 is a recruited retroposon. Mol. Cell Biol. 7:31073112. https://doi.org/10.1128/MCB.7.9.3107
  4. Brab, C. R., Hausman, G. J. and Houseknecht, K. L. 2001. Biology of leptin in the pig. Domest. Anim. Endocrinol. 21:297-317. https://doi.org/10.1016/S0739-7240(01)00123-0
  5. Chasman, D. and Adams, R. M. 2001. Predicting the functional consequences of non-synonymous single nucleotide polymorphism: structure-based assessment of amino acid variation. J. Mol. Biol. 307:683-706. https://doi.org/10.1006/jmbi.2001.4510
  6. Campbell, R. G., Steele, N. C., Caperna, T. J., McMurtry, P. J., Solomon, M. B. and Mitchell, A. D. 1989. Inter relationships between energy intake and endogenous porcine growth hormone administration on the performance, body composition and protein and energy metabolism of growing pigs weighing 25 to 55 kilograms live weight. J. Anim. Sci. 66:1643.
  7. Farooqi, I. S., Keogh, J. M., Yeo, G. S., Lank, E. J., Cheetham, T. and O'Rahilly, S. 2003. Clinical spectrum of obesity and mutations in the melanocrtin-4 receptor gene. N. Engl. J. Me. 348, 1085-1089. https://doi.org/10.1056/NEJMoa022050
  8. Gerbens, F., Harders, F. L., Groenen, M. A. M., Veerkamp, J. H. and Te Pas, M. F. W. 1998. A dimorphic microsatellite in the porcine H-FABP gene at chromosome 6, Anim Genet. 29:408.
  9. Chen, K., Knorr, C., Moser, G., Gatphayak, K. and Brenig, B. 2004. Molecular characterization of the porcine testis-specific phosphoglycerate kinase 2 (PGK 2) gene and its association with male fertility. Mamm. Genome. 15:996-1006. https://doi.org/10.1007/s00335-004-2405-1
  10. Giese, A., Jude, R., Kuiper, H., Piumi, F. and Schambony, A. 2002. Molecular characterization of the equine AEG1 locus. Gene. 292:6572.
  11. Gondret, F., Lefaucheur, L., Louveau, I., Lebret, B., Pichodo, X. and Le Cozler, Y. 2005. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Live. Pro Sci. 93:137-146. https://doi.org/10.1016/j.livprodsci.2004.09.009
  12. Hernandez-Sanchez, J., Visscher, P., Plastow, G. S. and Haley, C. 2003. Candidate gene analysis for quantitative traits using the transmission disequilibrium test: the example of the melancortin-4 receptor in pigs. Genetice. 164, 637-644.
  13. Hinney, A. S., Hohmann, F., Geller, C., Vogel, C., Hess, AK., Wermter, B., Brokamp, H., Goldschmidt, W., Siegfried, H., Remschmidt, H., Schafer, T., Gudermann and Hebebrand, J. 2003. Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J. Clin. Endocrinol. Metab. 88, 4258-4267. https://doi.org/10.1210/jc.2003-030233
  14. Kennes, Y. M., Murphy, B. D., Pothier, F. and Palin, M. F. 2001. Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Anim. Genet. 32:215-218. https://doi.org/10.1046/j.1365-2052.2001.00768.x
  15. Kim, J. H., Park, E. W., Park, J. J., Choi, B. W., Kim, T. H., Seo, B. Y., Cheong, I. C., Lim, H. T., Oh, S. J., Lee, J. G. and Jeon, J. T. 2005. Detection of novel mutations in the FABP3 promoter region and association analysis with intramuscular fat content in pigs. Korea. J. Anim. Sci & Technol. 47:1-10. https://doi.org/10.5187/JAST.2005.47.1.001
  16. Kopency, M., Stratil, A., van Poucke, M., Bartenschlager, H., Geldermann, H. and Peelman, L. J. 2004. PCR-RFLPs, limkage and RH mapping of the porcine TGFB1 and TGFBR1 genes. Anim. Genet. 35:245-264.
  17. Lay, A. J., Jiang, X. M., Kisker, O., Flynn, E., Underwood, A., Rosemary, Condron. and Philip, J. Hogg. 2000. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature. 408:869-873. https://doi.org/10.1038/35048596
  18. Louveau, I. and Gondret, F. 2004. Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domest. Anim. Endocrinol. 27:241-255. https://doi.org/10.1016/j.domaniend.2004.06.004
  19. Mahan, D. C. and Lepine. A. J. 1991. Effect of pig weaning weight and associated nursery feeding programs on subsequent performance to 105 kilograms body weight. J. Anim. Sci. 69: 1370-1378. https://doi.org/10.2527/1991.6941370x
  20. Marklund, L., Nystrom, P., Stern, S., Andersson-Eklund, L. and Andersson, L. 1999. Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity. 82:134-141. https://doi.org/10.1038/sj.hdy.6884630
  21. Mas, M. T., Chen, C. Y., Hitzeman, R. A. and Riggs, A. D. 1986. Active human-yeast chimeric phosphoglycerate kinases engineered by domain interchange. Science. 233:788-790. https://doi.org/10.1126/science.3526552
  22. McCarrey, J. R. and Thomas, K. 1987. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature. 326:501-505. https://doi.org/10.1038/326501a0
  23. Ovilo, C., Oliver, A., Noguera, J. L., Clop, A., Barrangan, C., Varona, L., Rodriguez, C., Toro, M., Sanchez, A., Perez-Enciso, M. and Silio, L. 2002. Test for positional candidate genes for body composition on pig chromosome 6. Genet. Sel. Evol. 34:465-479. https://doi.org/10.1186/1297-9686-34-4-465
  24. Sato, S., Oyamada, Y., Atsuji, K., Nade, T., Sato, S. I., Kobayashi, E., Mistuhashi, T., Nirasawa, K., Komatsuda, A., Saito, Y., Terai, S., Hayashi, T. and Sugimoto, Y. 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan × Duroc F2 resource population. J. Anim. Sci. 81:2938-2949. https://doi.org/10.2527/2003.81122938x
  25. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., Kondrashov, A. S. and Bork, P. 2001. Prediction of deleterious human alleles. Hum. Mol. Genet. 10:591-597. https://doi.org/10.1093/hmg/10.6.591
  26. Van Laere, A. S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., Archibald, A. L., Haley, C. S., Buys, N., Tally, M., Andersson, G., Georges, M. and Andersson, L. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 425:832-836. https://doi.org/10.1038/nature02064
  27. Wang, L., Yu, T. P., Tuggle, C. K., Liu, H. C. and Rothschild. M. F. 2003. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs. J. Anim. Sci. 76:2560-2567.
  28. Wolter, B. F. and Ellis, M. 2001. The effect of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 81:363-369. https://doi.org/10.4141/A00-100

Cited by

  1. Genome-wide Association Study Identifies Positional Candidate Genes Affecting Birth Weight Trait in Purebred Landrace vol.52, pp.3, 2018, https://doi.org/10.14397/jals.2018.52.3.55