DOI QR코드

DOI QR Code

Improving Efficiency of Low Cost EFG Ribbon Silicon Solar Cells by Using a SOD Method

SOD방법을 이용한 저가 EFG 리본 실리콘 태양전지의 효율 향상에 관한 연구

  • Kim, Byeong-Guk (Department of Electronic Engineering, Chungju National University) ;
  • Lim, Jong-Youb (Department of Electronic Engineering, Chungju National University) ;
  • Chu, Hao (Department of Electronic Engineering, Chungju National University) ;
  • Oh, Byoung-Jin (Department of Electronic Engineering, Chungju National University) ;
  • Park, Jae-Hwan (Department of Electronic Engineering, Chungju National University) ;
  • Lee, Jin-Seok (Energy Conversion and Storage Research Center, Korea Institute of Energy Research) ;
  • Jang, Bo-Yun (Energy Conversion and Storage Research Center, Korea Institute of Energy Research) ;
  • An, Young-Soo (Energy Conversion and Storage Research Center, Korea Institute of Energy Research) ;
  • Lim, Dong-Gun (Department of Electronic Engineering, Chungju National University)
  • 김병국 (충주대학교 전자공학과) ;
  • 임종엽 (충주대학교 전자공학과) ;
  • 저호 (충주대학교 전자공학과) ;
  • 오병진 (충주대학교 전자공학과) ;
  • 박재환 (충주대학교 전자공학과) ;
  • 이진석 (한국에너지기술연구원) ;
  • 장보윤 (한국에너지기술연구원) ;
  • 안영수 (한국에너지기술연구원) ;
  • 임동건 (충주대학교 전자공학과)
  • Received : 2010.10.12
  • Accepted : 2011.01.28
  • Published : 2011.03.01

Abstract

The high cost of crystalline silicon solar cells has been considered as one of the major obstacles to their terrestrial applications. Spin on doping (SOD) is presented as a useful process for the manufacturing of low cost solar cells. Phosphorus (P509) was used as an n-type emitters of solar cells. N-type emitters were formed on p-type EFG ribbon Si wafers by using a SOD at different spin speed (1,000~4,000 rpm), diffusion temperatures ($800^{\circ}C{\sim}950^{\circ}C$), and diffusion time (5~30 min) in $N_2+O_2$ atmosphere. With optimum condition, we were able to achieve cell efficiency of 14.1%.

Acknowledgement

Grant : 저가 리본 태양전지 기술개발

Supported by : 한국에너지기술연구원

References

  1. Solar&Energy Yatap Leaders Bldg.342-1 "Crystalline Si Solar Cells and Solar Modules Core Patent Analysis" 2010.
  2. S. U. Jun, K. M. Lim, S. H. Choi, Y. M. Hong, K. M. Cho, J. Kor. Inst. Surf. Eng. 40, 3 (2007).
  3. M. Ju. M. Gunasekaran, K. Kim, K. Han, I. Moon, K. Lee, S. Han, T. Kwon, D. Kyung, J. Y Materials Science and Engineering B 153, 66 (2008). https://doi.org/10.1016/j.mseb.2008.10.030
  4. K. M. Han, M. Thamilselvan, K. H. Kim M. K. Ju, Y. K. Kim, I. Y. Moon, K. S. Lee, D. H. Kyung, T.Y. Kwon, J. S. Yi, Solar Energy Materials & Solar Cells 93, 1042 (2009). https://doi.org/10.1016/j.solmat.2008.11.036
  5. M. Ben Rabha, M.F. Boujmil, M. Saadoun, H. Ezzaouia, B. Bessais Applied Surface Science, 254, 4467 (2008). https://doi.org/10.1016/j.apsusc.2008.01.021
  6. D. S. Kim, J. P. Kalejs, B. R. Bathey, A. M. Gabor, A. Rohatgi, K. Nakayashiki, S. H. Lee, Proceedings of the KSES Autume Annual Conference, 23 (2003).
  7. U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K. Dutta, H. Saha, J. Yi, Solar Energy Materials and Solar Cells, 91, 285 (2007). https://doi.org/10.1016/j.solmat.2006.08.011
  8. A. Ben Jaballah, M. Saadoun, M. Hajji, H. Ezzaouia, B. Bessais Applied Surface Science, 238, 199 (2004). https://doi.org/10.1016/j.apsusc.2004.05.210
  9. F. Duerinckx, J. Szlufcik, Solar Energy Materials and Solar Cells, 72, 231 (2002). https://doi.org/10.1016/S0927-0248(01)00170-2
  10. J, D. Lee, M. J. Kim, S. H. Lee, The Korean Solar Energy Society, 29, 2 (2009).

Cited by

  1. SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications vol.33, pp.2, 2013, https://doi.org/10.7777/jkfs.2013.33.2.069