DOI QR코드

DOI QR Code

Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD

MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향

  • Song, Jin-Soo (Department of Consulting Management, SBC) ;
  • Nam, Tae-Woon (Department of Metallurgical Material Science, Hanyang University)
  • 송진수 (중소기업진흥공단 컨설팅사업처) ;
  • 남태운 (한양대학교 금속재료공학과)
  • Received : 2011.01.17
  • Accepted : 2011.02.22
  • Published : 2011.03.01

Abstract

Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.

References

  1. M. G. Peters, R. H. Cummings, US Patent, 5, 236 (1993).
  2. X. M. Meng, W. Z. Tang. Hei, C.M.Li, S.J. Askari, G.C.Chen, F. X. Lu, Int. J. REFRACT. MET. HARD MAT., 26, 485 (2008). https://doi.org/10.1016/j.ijrmhm.2007.11.006
  3. R. Haubner, A. Lindlbauer, B. Lux, Diamond Rel. Mater, 2, 1505 (1993). https://doi.org/10.1016/0925-9635(93)90021-S
  4. Peters MG, Cummings RH. Eur Pat 0519 587 Al, (1992).
  5. N. Dilawar, R. Kapil, Thin Solid Films, 323, 12 (1998).
  6. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, T. Y. Lee, Thermo physical Properties of Matter, (TPRC Data Series Plenum, New York, 1975) p.12 .
  7. R. E. Clausing, L. H. Horton, J. C. Angus, K. Peter; Diamond and Diamond-like Films and Coatings (Plenum, New York, 1990).
  8. S. Soderber, K.Westergren, I. Reineck, P.E. Ekholm, H. Shahani, Diamond Rel. Mater, (Elsevier) 43 (1991).
  9. G. S. Vashilash, Tooling and Production, 18 (1995)
  10. D. T. Quinto, Tooling and Production, 10 (1996).
  11. R. S. Young, Cobalt-Its Chemistry, Metallugy, and Uses, Reinhold Pub (New York ,1961) p.64
  12. A. Kopf, M. Sommer, R. Haubner, B. Lux, Diamond and Rel. 10, 790 (2001). https://doi.org/10.1016/S0925-9635(00)00610-5
  13. S. Aisenberg, and R. Chabot, J. Appl. Phys, 42, 2953 (1971). https://doi.org/10.1063/1.1660654
  14. C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Rel. Mater, 2, 158 (1993). https://doi.org/10.1016/0925-9635(93)90047-6
  15. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Crystal Growth., 52, 219 (1981). https://doi.org/10.1016/0022-0248(81)90197-4
  16. L. Karson, L. Hultman and J. E. Sundgren, Thin Solid Films, 371, 167 (2000). https://doi.org/10.1016/S0040-6090(00)00996-2
  17. W. Fang and C. Y. Lo, Sensors and Actuators, 84, 310 (2000). https://doi.org/10.1016/S0924-4247(00)00311-3
  18. E. Uhlmann and K. Klein, Surf. Coat. Technol, 131, 448 (2000). https://doi.org/10.1016/S0257-8972(00)00837-9