DOI QR코드

DOI QR Code

Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks

La이 혼입된 고유전체/메탈 게이트가 적용된 나노 스케일 NMOSFET에서의 PBTI 신뢰성의 특성 분석

  • Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam National University) ;
  • Han, In-Shik (Department of Electronics Engineering, Chungnam National University) ;
  • Park, Sang-Uk (Department of Electronics Engineering, Chungnam National University) ;
  • Bok, Jung-Deuk (Department of Electronics Engineering, Chungnam National University) ;
  • Jung, Yi-Jung (Department of Electronics Engineering, Chungnam National University) ;
  • Kwak, Ho-Young (Department of Electronics Engineering, Chungnam National University) ;
  • Kwon, Sung-Kyu (Department of Electronics Engineering, Chungnam National University) ;
  • Jang, Jae-Hyung (Department of Electronics Engineering, Chungnam National University) ;
  • Go, Sung-Yong (DMS Co., Ltd) ;
  • Lee, Weon-Mook (DMS Co., Ltd) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
  • 권혁민 (충남대학교 전자전파정보통신공학과) ;
  • 한인식 (충남대학교 전자전파정보통신공학과) ;
  • 박상욱 (충남대학교 전자전파정보통신공학과) ;
  • 복정득 (충남대학교 전자전파정보통신공학과) ;
  • 정의정 (충남대학교 전자전파정보통신공학과) ;
  • 곽호영 (충남대학교 전자전파정보통신공학과) ;
  • 권성규 (충남대학교 전자전파정보통신공학과) ;
  • 장재형 (충남대학교 전자전파정보통신공학과) ;
  • 고성용 ;
  • 이원묵 ;
  • 이희덕 (충남대학교 전자전파정보통신공학과)
  • Received : 2011.01.13
  • Accepted : 2011.02.18
  • Published : 2011.03.01

Abstract

In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.

References

  1. M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, IEEE Spectr, 44, 10, 29, (2007). https://doi.org/10.1109/MSPEC.2007.4337663
  2. D. A. Buchanan, IBM J. Res. Dev, 43, 245 (1999). https://doi.org/10.1147/rd.433.0245
  3. E. P. Gusev, Electrochem. Soc., 477 (2000).
  4. G. Bersuker, J. H. Sim, C. D. Yong, R. Choi, P. M. Zeitzoff, G. A. Brown, B. H. Lee, and R. W. Murto, Microelectron. Reliab, 44, 9, 1509 (2004). https://doi.org/10.1016/j.microrel.2004.07.048
  5. A. Kerber et al., Proc. Int. Reliability Physics Symp, 41 (2003).
  6. P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, C. Krug, H. AlShareef, C. S. Park, R. Harris, N. Moumen, A. Neugroschel, and G. Bersuker, IEDM Technol. Dig, 1 (2006).
  7. P. D. Kirsch, P. Sivasubramani, J. Huang, C. D. Young, M. A. Quevedo-Lopez, H. C. Wen, H. Alshareef, K. Choi, C. S. Park, K. Freeman, M. M. Hussain, G. Bersuker, H. R. Harris, P. Majhi, R. Choi, P. Lysaght, B. H. Lee, H. H. Tseng, R. Jammy, T. S. Boscke, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, Phys. Lett, 92, 9, 092 901 (2008).
  8. P. Sivasubramani, T. S. Boscke, J. Huang, C. D. Young, P. D. Kirsch, S. A. Krishnan, M. A. Quevedo-Lopez, S. Govindarajan, B. S. Ju, H. R. Harris, D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, J. Kim, B. E. Gnade, R. M. Wallace, G. Bersuker, B. H. Lee, and R. Jammy, VLSI Symp. Technol. Dig, 68 (2007).
  9. C. Y. Kang, P. D. Kirsch, B. H. Lee, H. H. Tseng, and R. Jammy, IEEE Transactions on Device and Materials Reliability, 9, 2, 171 (2009). https://doi.org/10.1109/TDMR.2009.2020741
  10. X. P. Wang, M.-F. Li, C. Ren, X. F. Yu, C. Shen, H. H. Ma, A. Chin, C. X. Zhu, J. Ning, M. B. Yu, and D.-L. Kwong, IEEE Electron Device Lett, 27, 1, 31 (2006). https://doi.org/10.1109/LED.2005.859950
  11. Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, Jpn. J. Appl. Phys. 1, Regul. Rap. Short Notes, 46, 11, 7251 (2007). https://doi.org/10.1143/JJAP.46.7251
  12. Y. Abe, N. Miyata, Y. Shiraki, and T. Yasuda, Appl. Phys. Lett, 90, 17, 172 (2007).
  13. B. J. O'Sullivan, R. Mitsuhashi, G. Pourtois, M. Aoulaiche, M. Houssa, N. Van der Heyden, T. Schram, Y. Harada, G. Groeseneken, P. Absil, S. Biesemans, T. Nakabayashi, A. Ikeda, and M. Niwa, J. Appl. Phys, 104, 4, 044512 (2008). https://doi.org/10.1063/1.2967819
  14. S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, IEDM Technol. Dig., 517 (2002).
  15. A. Kerber and E. A. Cartier, IEEE Transactions on Device and Materials Reliability, 9, 2, 147 (2009). https://doi.org/10.1109/TDMR.2009.2016954
  16. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, IEEE Transactions on Device and Materials Reliability, 5, 1, 5 (2005). https://doi.org/10.1109/TDMR.2005.845236
  17. F. Crupi, C. Pace, G. Cocorullo, G. Groeseneken, M. Aoulaiche, M. Houssa, Microelectron. Eng, 80, 7, 130 (2005). https://doi.org/10.1016/j.mee.2005.04.055
  18. S. Kalpat, H. H. Tseng, M. Ramon, M. Moosa, D. Tekleab, P. J. Tobin, D. C. Gilmer, R. I. Hegde, C. Capasso, C. Tracy, and B. E. White, IEEE Transactions on Device and Materials Reliability, 5, 1, 26 (2005). https://doi.org/10.1109/TDMR.2005.845879
  19. P. Srinivasan, N. A. Chowdhury, D. Misra,, IEEE Electron Device Lett., 26, 12, 913 (2005). https://doi.org/10.1109/LED.2005.859677