Study on Adsorption Characteristics of Erythrosine Dye from Aqeous Solution Using Activated Carbon

활성탄에 의한 에리스로신 염료수용액의 흡착특성에 관한 연구

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2011.01.27
  • Accepted : 2011.02.21
  • Published : 2011.04.10

Abstract

Adsorption characteristics of erythrosine dye onto the activated carbon has been investigated in a batch system with respect to initial concentration, contact time and temperature. Kinetic studies of the adsorption of erythrosine were carried out at 298 K, using aqueous solutions with 100, 250 and 500 mg/L concentration of erythrosine. The adsorption process followed a pseuo second order model, and the adsorption rate constant (k2) decreased with increasing the initial concentration of erythrosine. The equilibrium process can be well discribed by Freundlich isotherm in the temperature range from 298 to 318 K. Free energy of adsorption (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) change were calculated to predict the nature the adsorption. The estimated values for ${\Delta}G^o$ were -3.72~-9.62 kJ/mol over the activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^o$ indicates that the adsorption of erythrosine dye on activated carbon is an endothermic process.

입상활성탄에 대한 erythrosine의 흡착특성을 초기농도, 접촉시간 및 흡착온도를 변수로 하여 회분식실험을 통하여 조사하였다. Erythrosine에 대한 흡착동력학적 연구는 298 K에서 초기농도가 100, 250, 500 mg/L인 에리스로신 수용액에 대해 수행하였다. 흡착공정은 유사이차속도식에 잘 맞았으며 유사이차속도상수(k2)는 에리스로신의 초기농도가 높을수록 감소하였다. 에리스로신의 평형흡착관계는 298~318 K의 온도범위에서 Freundlich 등온식이 잘 적용되었다. 흡착자유에너지변화(${\Delta}G^o$), 엔탈피변화(${\Delta}H^o$), 엔트로피변화(${\Delta}S^o$)를 계산하여 본 결과, 표준자유에너지 변화량이 -3.72~-9.62 kJ/mol로 자발적인 공정임을 알았다. 엔탈피변화량이 양의 값을 나타내어 활성탄에 대한 에리스로신 염료의 흡착이 흡열반응임을 알 수 있었다.

References

  1. Y. M. Kim, Characteristics and treatment method od dyestuff waste water, Dicer Report, Topic Review, 9, 1 (2009).
  2. S. L. Yankell and J. J. Loux, J. Periodont, 48, 228 (1977). https://doi.org/10.1902/jop.1977.48.4.228
  3. T. F. X. Collins, T. N. Black, M. W. O-Donell, M. E. Shackelford, and P. Bulhack, Food. Chem. Toxicol., 31, 161 (1993). https://doi.org/10.1016/0278-6915(93)90089-H
  4. Korea Food & Drug Administration, Sindonga. 590, 198 (2008).
  5. Y. Jheong, J. W. Kwon, and S. H. Min, J. Pharmaceutical Investigation, 14, 50 (1984).
  6. V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, J. Colloid. Sci., 304, 52 (2006). https://doi.org/10.1016/j.jcis.2006.08.032
  7. R. Jain and S. Sikarwar, J. Hazard. Mater., 164, 627 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.043
  8. J. J. Lee and S. W. Yoon, J. KSEE, 31, 499 (2009).
  9. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, J. Hazard. Mater., 154, 337 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  10. B. H. Fukukawa, Activated carbon water treatment technology and management, 63, Donghwa Technology, Seoul (2003).
  11. G. McKay, M. E. Guendi, and M. Nassar, Water Res., 21, 1513 (1987). https://doi.org/10.1016/0043-1354(87)90135-7
  12. A. Ozcan and A. S. Ozcan, J. Harzad Mater., B125, 252 (2005).
  13. A. Mital, L. Kurup, and V. K. Gupta, J. Harzad Mater., B117, 171 (2005).
  14. P. Chingombe, B. Saha, and R. J. Wakeman, J. Colloid Interf. Sci., 302, 408 (2006). https://doi.org/10.1016/j.jcis.2006.06.065
  15. P. Sivakumar and P. N. Palanisamy, Int. J. Chem. Tech. Res., 1, 502 (2009).
  16. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  17. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  18. M. T. Sulak, E. Demirbas, and M. Kobya, Biosource Technology, 98, 2590 (2007). https://doi.org/10.1016/j.biortech.2006.09.010