Study on Adsorption Characteristics of Erythrosine Dye from Aqeous Solution Using Activated Carbon

활성탄에 의한 에리스로신 염료수용액의 흡착특성에 관한 연구

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2011.01.27
  • Accepted : 2011.02.21
  • Published : 2011.04.10

Abstract

Adsorption characteristics of erythrosine dye onto the activated carbon has been investigated in a batch system with respect to initial concentration, contact time and temperature. Kinetic studies of the adsorption of erythrosine were carried out at 298 K, using aqueous solutions with 100, 250 and 500 mg/L concentration of erythrosine. The adsorption process followed a pseuo second order model, and the adsorption rate constant (k2) decreased with increasing the initial concentration of erythrosine. The equilibrium process can be well discribed by Freundlich isotherm in the temperature range from 298 to 318 K. Free energy of adsorption (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) change were calculated to predict the nature the adsorption. The estimated values for ${\Delta}G^o$ were -3.72~-9.62 kJ/mol over the activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^o$ indicates that the adsorption of erythrosine dye on activated carbon is an endothermic process.

Keywords

erythrosine;activated carbon;adsorption;adsorption kinetics;equilibrium process

References

  1. Y. M. Kim, Characteristics and treatment method od dyestuff waste water, Dicer Report, Topic Review, 9, 1 (2009).
  2. S. L. Yankell and J. J. Loux, J. Periodont, 48, 228 (1977). https://doi.org/10.1902/jop.1977.48.4.228
  3. T. F. X. Collins, T. N. Black, M. W. O-Donell, M. E. Shackelford, and P. Bulhack, Food. Chem. Toxicol., 31, 161 (1993). https://doi.org/10.1016/0278-6915(93)90089-H
  4. Korea Food & Drug Administration, Sindonga. 590, 198 (2008).
  5. Y. Jheong, J. W. Kwon, and S. H. Min, J. Pharmaceutical Investigation, 14, 50 (1984).
  6. V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, J. Colloid. Sci., 304, 52 (2006). https://doi.org/10.1016/j.jcis.2006.08.032
  7. R. Jain and S. Sikarwar, J. Hazard. Mater., 164, 627 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.043
  8. J. J. Lee and S. W. Yoon, J. KSEE, 31, 499 (2009).
  9. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, J. Hazard. Mater., 154, 337 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  10. B. H. Fukukawa, Activated carbon water treatment technology and management, 63, Donghwa Technology, Seoul (2003).
  11. G. McKay, M. E. Guendi, and M. Nassar, Water Res., 21, 1513 (1987). https://doi.org/10.1016/0043-1354(87)90135-7
  12. A. Ozcan and A. S. Ozcan, J. Harzad Mater., B125, 252 (2005).
  13. A. Mital, L. Kurup, and V. K. Gupta, J. Harzad Mater., B117, 171 (2005).
  14. P. Chingombe, B. Saha, and R. J. Wakeman, J. Colloid Interf. Sci., 302, 408 (2006). https://doi.org/10.1016/j.jcis.2006.06.065
  15. P. Sivakumar and P. N. Palanisamy, Int. J. Chem. Tech. Res., 1, 502 (2009).
  16. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  17. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  18. M. T. Sulak, E. Demirbas, and M. Kobya, Biosource Technology, 98, 2590 (2007). https://doi.org/10.1016/j.biortech.2006.09.010