Synthesis of Zeolite A from Coal Fly Ash

석탄회로부터 제올라이트 A의 합성

  • Jee, Jeong-Dae (Department of Chemical Engineering, Seoul National University of Science and Technology) ;
  • Choi, Ko-Yeol (Department of Chemical Engineering, Seoul National University of Science and Technology)
  • 지정대 (서울과학기술대학교 화학공학과) ;
  • 최고열 (서울과학기술대학교 화학공학과)
  • Received : 2011.01.11
  • Accepted : 2011.02.07
  • Published : 2011.04.10


Zeolite A was synthesized from coal fly ash by the microwave heating as well as the conventional heating method. The effects of reaction time, the amount of sodium aluminate, and the reaction temperature on the crystallization of zeolite A were investigated. The optimum crystallization time was about 3 to 6 h in the temperature range of $80{\sim}100^{\circ}C$. The amount of sodium aluminate was found to be optimum when the molar ratio $SiO_2/Al_2O_3$ of starting solution was in the range of 0.44 to 1.05 at above $90^{\circ}C$, However, The more amount of sodium aluminate was required to get zeolite A at $80^{\circ}C$. Although the rate of crystallization was slightly faster in the microwave heating than that in the conventional heating, the reaction time need to obtain fully crystallized zeolite A was similar in both methods. Therefore, the influence of the microwave heating was not so large compared with the conventional heating in the synthesis of zeolite A from coal fly ash.


  1. R. Apiratikul and P. Pavasant, Chem. Eng. J., 144, 245 (2008).
  2. Y. Fan, F.-S. Zhang, J. Zhu, and Z. Liu, J. Hazard. Mater., 153, 382 (2008).
  3. T. Mishra and S. K. Tiwari, J. Hazard. Mater. B, 137, 299 (2006).
  4. A. Molina and C. Poole, Miner. Eng., 17, 167 (2004).
  5. D. Wu, Y. Sui, X. Chen, S. He, X. Wang, and H. Kong, Fuel, 87, 2194 (2008).
  6. M. Criado, A. Jimenez, A. Torre, M. Aranda, and A. Palomo, Cem. Concr. Res., 37, 671 (2007).
  7. N. Murayama, T. Takahashi, K. Shuku, H. H. Lee, and J. Shibata, Int. J. Miner. Process., 87, 129 (2008).
  8. R. Juan, S. Hernandez, J. M. Andres, and C. Ruiz, Fuel, 86, 1811 (2007).
  9. N. Murayama, H. Yamamoto, and J. Shibata, Int. J. Miner. Process., 64, 1 (2002).
  10. Y. Sui, D. Wu, D. Zhang, X. Zheng, Z. Hu, and H. Kong, J. Colloid interface. Sci., 322, 13 (2008).
  11. H. Tanaka, Y. Sakai, and R. Hino, Mater. Res. Bulletin, 37, 1873 (2002).
  12. K. S. Hui and C. Y. H. Chao, J. Hazard. Mater. B, 137, 401 (2006).
  13. K. Y. Choi, G. Tompsett, and W. C. Conner, Green Chem., 10, 1313 (2008).
  14. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, and J. Hojo, Fuel, 84, 1482 (2005).
  15. R. Ballmoos and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, p.397s, Butterworth-Heinemann, Massachusetts (1990).
  16. Y. Yaping, Z. Xiaoqiang, Q. Weilan, and W. Mingwen, Fuel, 87, 1880 (2008).
  17. S. Rayalu, S. U. Meshram, and M. Z. Hasan, J. Hazard. Mater. B, 77, 123 (2000).
  18. D. W. Breck, Zeolite Molecular Sieves, p.267, John Wiley & Sons, New York (1974).
  19. X. Querol, A. Alastuey. A. Lopez-Soler, F. Plana, J. Andres, R. Juan, P. Ferrer, and C. Ruiz, Environ. Sci. Technol., 31, 2527 (1997).
  20. O. G. Somani, A. L. Choudhari. B. S. Rao, and S. P. Mirajkar, Minerals Chemistry and Physics, 82, 538 (2003).
  21. J. Motuzas, A. Julbe, R. D. Noble, A. Lee, and Z. J. Beresnevicius, Micropor. Mesopor. Mater., 92, 259 (2006).
  22. X. Xu, W. Yang, J. Liu, and L. Lin, Sep. Purif. Technol., 25, 241 (2001).