Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell

염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과

  • Kim, Gyeong-Ok (Department of Chemistry, University of Ulsan) ;
  • Kim, Ki-Won (i-cube center, ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Cho, Kwon-Koo (i-cube center, ITRC for Energy Storage and Conversion, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
  • 김경옥 (울산대학교 화학과) ;
  • 김기원 (경상대학교 신소재공학부) ;
  • 조권구 (경상대학교 신소재공학부) ;
  • 류광선 (울산대학교 화학과)
  • Received : 2010.12.22
  • Accepted : 2011.02.08
  • Published : 2011.04.10

Abstract

To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

Keywords

scattering layer;$TiCl_4$ treatment;higher efficiency;DSSC

Acknowledgement

Supported by : 한국연구재단

References

  1. M. J. Ko and N. G. Park, KIC News, 11, 3 (2008).
  2. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. N. Robertson, Chem. Int. Ed., 45, 2338 (2006). https://doi.org/10.1002/anie.200503083
  4. H. Tian and F. Meng, Opt. Sci. Eng., 99, 313 (2005).
  5. M. Gratzel, Prog. Photovoltaics. Res. Appl., 14, 589 (2006). https://doi.org/10.1002/pip.683
  6. M. A. Green, Mater. Energy Convers. Dev., 3 (2005).
  7. S. E. Gledhill and B. Scott, J. Mater. Res., 20, 3167 (2005). https://doi.org/10.1557/jmr.2005.0407
  8. M. Gorlov and L. Kloo, Dalton Trans., 2655 (2008).
  9. V. Thavasi and R. Jose, Mater. Sci. Eng. R., 63, 81 (2009). https://doi.org/10.1016/j.mser.2008.09.001
  10. M. K. Nazeeruddin, A. Kay, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993) https://doi.org/10.1021/ja00067a063
  11. T. W. Hamann and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  12. S. Ito and M. Gratzel, Thin Solid Films., 516, 4613 (2008). https://doi.org/10.1016/j.tsf.2007.05.090
  13. H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  14. M. Adachi and Y. Murata, J. Am. Chem. Soc., 126, 14943 (2004). https://doi.org/10.1021/ja048068s
  15. S. Nakada and S. Yanagida, J. Phys. Chem. B., 107, 8607 (2003).
  16. P. J. Cameron and L. M. Peter, J. Phys. Chem. B., 109, 7392 (2005). https://doi.org/10.1021/jp0407270
  17. M. Gratzel, J. Phys. Chem. B., 109, 14945 (2005). https://doi.org/10.1021/jp052768h
  18. M. Y. Song, D. K. Kim, and D. Y. Kim, Synth. Met., 155, 635 (2005). https://doi.org/10.1016/j.synthmet.2005.08.018