Preparation and Characterization of Nanocrystalline Spinel Ferrites by Chemical Co-precipitation

화학적 공침법을 이용한 침상형 페라이트 합성

  • Shen, Jiao-Wen (Department of Applied Environment Science, Center for Environment Studies, Kyung Hee University) ;
  • Lim, Yun-Hui (Department of Applied Environment Science, Center for Environment Studies, Kyung Hee University) ;
  • Jo, Young-Min (Department of Applied Environment Science, Center for Environment Studies, Kyung Hee University)
  • ;
  • 임윤희 (경희대학교 환경응용과학과 환경연구센터) ;
  • 조영민 (경희대학교 환경응용과학과 환경연구센터)
  • Received : 2010.12.21
  • Accepted : 2011.01.19
  • Published : 2011.04.10

Abstract

In this work, nano-sized M-ferrites (M=Co, Ni, Cu, Zn) for the decomposition of carbon dioxide were synthesized by the chemical co-precipitation. From the thermogravimetric analysis, it was clear that the maximum weight loss of each sample took place below $350^{\circ}C$. High temperature calcination resulted in more systematic crystallines, smaller specific surface area and larger particle size. An analysis by FTIR in the range of $375{\sim}406cm^{-1}$ revealed the presence of chelates at the octahedral site, which implies the formation of spinel structure in the ferrites. The current work showed that a $500^{\circ}C$ is the optimum heat treatment temperature of metal ferrites for $CO_2$ decomposition reaction.

Keywords

carbon dioxide;decomposition;co-precipitation;oxygen deficient ferrite;spinel structure

Acknowledgement

Supported by : 한국연구재단

References

  1. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. B., 104, 1141 (2000).
  2. G. M. Donald, MR imaging contrast agents, 1 (1997).
  3. Y. Tamaura and M. Tahata, Nature, 346, 255 (1990). https://doi.org/10.1038/346255a0
  4. T. Kodama, M. Tabata, K. Tominaga, T. Yoshida, and Y. Tamaura, J. Mater. Sci., 28, 547 (1993). https://doi.org/10.1007/BF00357836
  5. H. Kato, T. Kodama, M. Tsuji, Y. Tamaura, and S. G. Chang, J. Mater. Sci., 29, 5689 (1994). https://doi.org/10.1007/BF00349965
  6. M. H. Khedr and A. A. Farghali, Appl. Cat. B: Environ., 61, 219 (2005). https://doi.org/10.1016/j.apcatb.2005.05.004
  7. M. H. Khedr, A. A. Omar, and S. A. Abdel-Moaty, Mater. Sci. Eng. A, 432, 26 (2006). https://doi.org/10.1016/j.msea.2006.06.012
  8. M. H. Khedr, M. Bahgat, M. I. Nasr, and E. K. Sedeek, Colloids Surf. A-Physicochem. Eng. Aspects, 302, 517 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.024
  9. M. H. Khedr, K. S. A. Halim, and A. H. Zaki, J. Anal. Appl. Pyrol., 81, 272 (2008). https://doi.org/10.1016/j.jaap.2007.12.006
  10. G. Wulfsberg, Inorganic Chemistry: University Science Books (2000).
  11. L. J. Ma, L. S. Chen, and S. Y. Chen, J. Phys. Chem. Solids, 68, 1330 (2007). https://doi.org/10.1016/j.jpcs.2007.02.022
  12. C. L. Zhang, S. Li, L. J. Wang, T. H. Wu, and S. Y. Peng, Mater. Chem. Phys., 62, 44 (2000). https://doi.org/10.1016/S0254-0584(99)00169-8
  13. M. H. Khedr, A. A. Omar, and S. A. Abdel-Moaty, Colloids Surf. A-Physicochem. Eng. Aspects, 281, 8 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.005
  14. I. Nedkov, T. Merodiiska, L. Slavov, R. E. Vandenberghe, Y. Kusano, and J. Takada, J. Magn. Magn. Mater., 300, 358 (2006). https://doi.org/10.1016/j.jmmm.2005.05.020
  15. B. Tang, L. Yuan, T. Shi, L. Yu, and Y. Zhu. J. Hazard Mater., 163, 1173 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.095
  16. W. Z. Lv, B. Liu, Z. K. Luo, X. Z. Ren, and P. X. Zhang. J. Alloys Comp., 465, 261 (2008). https://doi.org/10.1016/j.jallcom.2007.10.049
  17. A. Jitianu, A. Meghea, I. Rau, and M. Zaharescu. J. Mater. Chem., 12, 1401 (2002). https://doi.org/10.1039/b110652j
  18. P. Priyadharsini, A. Pradeep, P. S. Rao, and G. Chandrasekaran, J. Mater. Chem., 116, 207 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.011