Antibacterial, Antioxidative and Antiaging Effects of Allium cepa Peel Extracts

양파껍질 추출물의 항균, 항산화 및 항노화 효과에 관한 연구

  • Kim, Jung Eun (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, A Reum (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Kim, Min Ji (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Science and Technology)
  • 김정은 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 김아름 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 김민지 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울과학기술대학교 자연생명과학대학 정밀화학과)
  • Received : 2010.12.07
  • Accepted : 2011.01.13
  • Published : 2011.04.10

Abstract

In this study, the antibacterial, antioxidative and inhibitory effects of Allium cepa peel extracts on tyrosinase and elastase were investigated. MIC values of the ethyl acetate fraction of Allium cepa peel on especially, S. aureus among the skin resident flora (Staphylococcus aureus, S. aureus; Propionibacterium acnes, P. acnes; Pityrosporum ovale, P. ovale; Escherichia coli, E. coli) were 0.06%. The aglycone fraction showed more excellent free radical (1,1-diphenyl-2-picrylhydrazyl radical, DPPH) scavenging activity ($FSC_{50}=5.05{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction and aglycone fraction in the luminol-dependent $Fe^{3+}-EDTA/H_2O_2$ system were 0.05 and $0.03{\mu}g/mL$, respectively. The cellular protective effect of the aglycone fraction on the rose-bengal sensitized photohemolysis of human erythrocytes exhibited more prominent (${\tau}_{50}$, 480 min at $25{\mu}g/mL$). The inhibitory effects ($IC_{50}$) of the ethyl acetate fraction and aglycone fraction on tyrosinase were 9.16 and $8.68{\mu}g/mL$, the inhibitory effect ($IC_{50}$) of the aglycone fraction on elastase was $14.12{\mu}g/mL$ The transepidermal water loss of the cream containing 0.1% ethyl acetate fraction was decreased from $8.3g/m^2h$ in control to $6.8g/m^2h$ in the subjects applied with cream containing the ethyl acetate fraction. These results indicate that extract/fractions of Allium cepa peel can function as antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS, and possibly as antiaging agents. Allium cepa peel extract could be used as a new cosmeceutical for whitening and anti-wrinkle products.

Keywords

Allium cepa peel;antibacterial activity;antioxidant;antiaging;cosmetics

References

  1. E. H. Witt, P. Motchnik, and L. Packer, Evidence for UV light as an oxidative stressor in skin, eds. J. Fuchs and L. Packer, Oxidative Stress in Dermatology. 29, New York, Dekker (1993).
  2. I. Emerit, Free radicals and aging of the skin, eds. L. Emerit and B. Chance, Free radicals and aging, 328, Basel, Birkhauser (1992).
  3. C. S. Foote, Photosensitized oxidation and singlet oxygen; consequences in biological systems, ed. W. A. Pryor, 2, 85, Acdemic press, New York (1976).
  4. S. N. Park, Ph. D. Dissertation, Seoul National Univ., Seoul, Korea (1989).
  5. S. N. Park, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997).
  6. S. N. Park, Korean J. Food Sci. Technol., 35, 510 (2003).
  7. S. N. Park, J. Korean Ind. Eng. Chem., 14, 657 (2003).
  8. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: its prevention and therapy, antioxidants in disease mechanism and therapy, ed. H. Sies, 38, 639 (1997).
  9. R. M. Tyrrell and M. Pidoux, Photochem. Photobiol., 49, 407 (1989). https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  10. G. F. Vile and R. M. Tyrrell, Free Radical Biology & Medicine, 18, 721 (1995). https://doi.org/10.1016/0891-5849(94)00192-M
  11. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  12. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  13. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Photodermatology, 2, 15 (1985).
  14. A. Oikarinen and M. Kallioinen, Photodermatology, 6, 24 (1989).
  15. L. H. Kligman, UVA induced biochemical changes in hairless mouse skin collagen : a contrast to UVB effects, ed. F. Urbach, 209, Valdemar, Overland Park (1992).
  16. J. W. Choi, S. I. Kim, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  17. H. J. Yang and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 61 (2007).
  18. H. J. Yang and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 139 (2007).
  19. S. M. Jeon, S. I. Kim, J. Y. Ahn, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 33, 145 (2007).
  20. J. Y. Kim, H. J. Yang, K. H. Le, S. M. Jeon, Y. J. Ahn, B. R Won, and S. N. Park, J. Soc. Cosmet. Scientists Korea, 32, 181 (2006).
  21. Y. J. Cho, I. S. Ju, O. J. Kwon, S. S. Chun, B. J. An, and J. H. Kim, J. Korea Soc. Appl. Biol. Chem., 51, 49 (2008).
  22. D. Y. Kang, M. O. Shin, J. H. Shon, and S. J. Bae, J. Life Science, 19, 52 (2009). https://doi.org/10.5352/JLS.2009.19.1.052
  23. T. Kaneko and N. Baba, Biosci. Biotechnol. Biochem., 63, 323 (1999). https://doi.org/10.1271/bbb.63.323
  24. S. Kawaii, Y. Tomono, E. Katase, K. Ogawa, and M. Yano, Biosci. Biotechnol. Biochem., 63, 896 (1999). https://doi.org/10.1271/bbb.63.896
  25. J. Sanderson, W. Mclauchlin, and G. Williamson, Free Rad. Biol. Med., 26, 639 (1999). https://doi.org/10.1016/S0891-5849(98)00262-7
  26. Z. Shutenko, Y. Henry, E. Pinard, J. Seylaz, P. Potier, F. Berthet, P. Girard, and R. Sercombe, Biochem. Pharmacol., 57, 199 (1999). https://doi.org/10.1016/S0006-2952(98)00296-2
  27. I. Goldman, M. Kopelberg, J. Devaene, and B. Schwartz, Throm. Haemo., 450 (1996).
  28. A. Gulsen, D. P. Makris, and P. Kefalas, Food Res. Int., 40, 7 (2007). https://doi.org/10.1016/j.foodres.2006.07.009
  29. D. Prakash, G. Upadhyay, B. N. Singh, and H. B. Singh, Food Chem., 104, 783 (2007). https://doi.org/10.1016/j.foodchem.2006.12.029
  30. T. C. Lines and M. Ono, Phytomedicine, 13, 236 (2006). https://doi.org/10.1016/j.phymed.2004.12.001
  31. Brahma N. Singh, B. R. Singh, R. L. Singh, D. Prakash, D. P. Singh, B. K. Sarma, G. Upadhyay, and H. B. Singh, Food Chem. Toxi., 47, 1161 (2009). https://doi.org/10.1016/j.fct.2009.02.004
  32. S. Balasenthil, S. Arivazhagan, C. R. Ramachandran, V. Ramachandran, and S. Nagini, J. Ethnopharmacol., 67, 189 (1999). https://doi.org/10.1016/S0378-8741(99)00015-X
  33. M. Valko, D. Leibfritz, J. Moncola, M. T. D. Cronin, M. Mazura, and J. Telser, Int. J. Biochem. Cell Biol., 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001