Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells

직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동

  • Kim, Byung-Ju (Department of Chemistry, Inha University) ;
  • Seo, Min-Kang (Jeonju Institute of Machinery and Carbon Composites) ;
  • Choi, Kyeong-Eun (Department of Practical Arts Education, Jeonju National University of Education) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 김병주 (인하대학교 화학과) ;
  • 서민강 (전주기계탄소기술원) ;
  • 최경은 (전주교육대학교 실과교육과) ;
  • 박수진 (인하대학교 화학과)
  • Received : 2010.12.01
  • Accepted : 2011.01.23
  • Published : 2011.04.10


In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.


Supported by : 교육과학기술부


  1. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells, 1, 5 (2001). https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  2. R. F. Horng, Energy Convers. Manag., 46, 1193 (2005). https://doi.org/10.1016/j.enconman.2004.06.018
  3. R. Sellin, C. Grolleau, S. A. Clacens, S. Pronier, J. Clacens, C. Coutanceau, and J. Leger, J. Phys. Chem. C, 113, 21735 (2009). https://doi.org/10.1021/jp907326q
  4. M. Boaro, V. Modafferi, A. Pappacena, J. Llorca, V. Baglio, F. Frusteri, P. Frontera, A. Trovarelli, and P. L. Antonucci, J. Power Sources, 195, 649 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.006
  5. D. S. Kim, I. C. Park, H. I. Cho, D. H. Kim, G. Y. Moonc, and J. W. Rh, J. Ind. Eng. Chem., 2, 265 (2009).
  6. S. Kim, M. H. Cho, J. R. Lee, H. J. Ryu, and S. J. Park, Korean. Chem. Eng. Res., 43, 756 (2005).
  7. C. H. Lee, C. H. Park, and Y. M. Lee, J. Membr. Sci., 313, 199 (2008). https://doi.org/10.1016/j.memsci.2008.01.004
  8. J. K. Shin, S. M. Jung, S. H. Baeck, and Y. S. Tak, Appl. Chem. Eng., 21, 435 (2010).
  9. S. Kim and S. J. Park, Electrochim. Acta, 52, 3013 (2007). https://doi.org/10.1016/j.electacta.2006.09.060
  10. T. Kawaguchi, W. Sugiimoto, Y. Murakami, and Y. Takasu, J. Catalysis, 229, 176 (2005). https://doi.org/10.1016/j.jcat.2004.10.020
  11. S. M. Jung, J. K. Shin, K. S. Kim, S. H. Baeck, and Y. S. Tak, Appl. Chem. Eng., 21, 537 (2010).
  12. K. D. Nam, T. J. Kim, S. K. Kim, B. R. Lee, D. H. Peck, S. K. Ryu, and D. H. Jung, J. Korean Ind. Eng. Chem., 17, 223 (2006).
  13. J. B. Xu, T. S. Zhao, and Z. X. Liang, J. Power Sources, 185, 857 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.039
  14. S. J. Park, H. J. Jung, and C. H. Na, Polymer (Korea), 27, 46 (2003).
  15. C. W. Lin, R. Thangamuthu, and C. J. Yang, J. Membr. Sci., 253, 23 (2005). https://doi.org/10.1016/j.memsci.2004.12.021
  16. R. K. Rao and D. C. Trivedi, Coord. Chem. Rev., 249, 613 (2005). https://doi.org/10.1016/j.ccr.2004.08.015
  17. H. Qiao, M. Kunimatsu, and T. Okada, J. Power Sources, 139, 30 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.003
  18. C. A. Frysz and D. D. L. Chung, Carbon, 35, 1111 (1997). https://doi.org/10.1016/S0008-6223(97)00083-3
  19. S. J. Park and J. B. Donnet, J. Colloid Interface Sci., 206, 29 (1998). https://doi.org/10.1006/jcis.1998.5672
  20. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredirckson, B. F. Chemlka, and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  21. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  22. S. J. Park and M. H. Kim, J. Mater. Sci., 35, 1 (2002).
  23. W. Li, C. Liang, J. Qiu, J. Zhou, W. Han, Z. Wei, G. Sun, and Q. Xin, Carbon, 40, 791 (2002). https://doi.org/10.1016/S0008-6223(02)00039-8
  24. K. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, J. Mater. Chem., 14, 505 (2004). https://doi.org/10.1039/b314224h
  25. A. Taguchi and F. Schuth, Microp. and Mesop. Mater., 77, 1 (2005). https://doi.org/10.1016/j.micromeso.2004.06.030
  26. S. Kim, J. R. Lee, and S. J. Park, Korean Chem. Eng. Res., 46, 118 (2008).
  27. S. J. Park, J. S. Oh, and D. H. Suh, J. Korean Ind. Eng. Chem., 14, 586 (2003).
  28. Y. H. Kim and S. J. Park, Appl. Chem. Eng., 21, 183 (2010).
  29. C. K. Dyer, J. Power Sources, 106, 31 (2002). https://doi.org/10.1016/S0378-7753(01)01069-2
  30. M. Ciureanu, D. Mikhailenko, and S. Kaliaguine, Catal. Today, 82, 195 (2003). https://doi.org/10.1016/S0920-5861(03)00233-5
  31. M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, and T. J. Bandosz, Carbon, 46, 1475 (2008). https://doi.org/10.1016/j.carbon.2008.06.027