The Effect of Pt and La Promoted on Cobalt-Based Catalyst for CO2 Dry Reforming

이산화탄소 건식 개질반응을 위한 코발트계 촉매에서 Pt와 La의 영향

  • Lee, Hye-Hyun (Environment & Resources Center, Korea Research Institute of Chemical Technology) ;
  • Song, Sang-Hoon (Environment & Resources Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Tae-Sun (Environment & Resources Center, Korea Research Institute of Chemical Technology) ;
  • Hong, Ji-Sook (Environment & Resources Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Jeong-Kwon (Environment & Resources Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Chang-Yong (Department of Environmental Engineering, Kongju National University)
  • 이혜현 (한국화학연구원 환경자원연구센터) ;
  • 송상훈 (한국화학연구원 환경자원연구센터) ;
  • 장태선 (한국화학연구원 환경자원연구센터) ;
  • 홍지숙 (한국화학연구원 환경자원연구센터) ;
  • 서정권 (한국화학연구원 환경자원연구센터) ;
  • 이창용 (공주대학교 환경공학과)
  • Received : 2010.11.26
  • Accepted : 2011.01.19
  • Published : 2011.04.10

Abstract

The $CO_2$ dry reforming reaction, which converts carbon dioxide to hydrogen and carbon monoxide, is typical endothermic reaction, and also known as adverse reaction owing to thermodynamics. In order to overcome the problem, the development studies of suitable catalyst based on precious metals for high durability of thermal and optimization of life time have been examined but it had economical problem by high cost. In this study, we confirmed optimum contents of Pt and La with such different contents of Pt (0.02~0.2 wt%) or La (2~20 wt%) over $Co/SiO_2$ which prepared for excellent activity and cost-effective catalysts. As a result, the promoted catalysts with 0.04 wt% Pt or 9 wt% La over $Co/SiO_2$ showed the highest activity which is 57% and 55% $CO_2$ conversion respectively. Also, the particle size of cobalt on the promoted catalysts with 0.04 wt% Pt or 9 wt% La by characterization of catalyst could confirm the smallest particle size in this study. Therefore, it could know that particle size of cobalt had effected the stability and reactivity of catalysts due to the contents of Pt and La.

Keywords

$CO_2$ dry reforming;cobalt-silica catalyst;platinum;lanthanum;cobalt particle size

References

  1. K.-H. Song, J.-H. Ryu, and J.-S. Chung, Korean Chem. Eng. Res., 47, 519 (2009).
  2. W.-I. Cho, S.-H. Lee, Y.-G. Mo, D.-G. Shin, and Y.-S. Baek, The Korean Hydrogen and New Energy Society, 15, 301 (2004).
  3. J. H. Edwards and A. M. Maitra, Fuel Process. Technol., 42, 269 (1995). https://doi.org/10.1016/0378-3820(94)00105-3
  4. S. Sun, K. Fujimoto, Y. Yoneyama, and N. Tsubaki, Fuel, 81, 1583 (2002). https://doi.org/10.1016/S0016-2361(02)00090-X
  5. J. H. Edwards and A. M. Maitra, Stud. Surf. Sci. Catal., 81, 291 (1994).
  6. S. Ozkara-Aydınoglu and A. Erhan Aksoylu, Catal. Commun., 11, 1165 (2010). https://doi.org/10.1016/j.catcom.2010.07.001
  7. K. Takanabe, K. Aika, K. Seshan, and L. Lefferts., Chem. Eng. J., 120, 133 (2006). https://doi.org/10.1016/j.cej.2006.04.001
  8. K. Nagaoka, K. Takanabe, and K.-I. Aika, Appl. Catal. A, 268, 151 (2004). https://doi.org/10.1016/j.apcata.2004.03.029
  9. S. H. Song, S. B. Lee, J. W. Bae, P. S. Sai Prasad, K. W. Jun, and Y. G. Shul, Catal. Commun., 9, 2282 (2008). https://doi.org/10.1016/j.catcom.2008.05.023
  10. H.-J. Jeon, G. Suh, C. Academy, Y.-W. Kim, 4, 254, Hanrimwon (2002).
  11. X. Zhang, C. S. M. Lee, D. Michael, P. Mingos, and D. O. Hayward, Catal. Lett., 88, 129 (2003). https://doi.org/10.1023/A:1024049403422
  12. S. M. Stagg, E. Romeo, C. Padro, and D. E. Resasco, J. Catal., 178, 137 (1998). https://doi.org/10.1006/jcat.1998.2146
  13. L. B. Backman, A. Rantiainen, A. O. I. Krause, and M. Lindblad, Catal. Today, 43, 11 (1998). https://doi.org/10.1016/S0920-5861(98)00132-1
  14. R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, and C. Mirodatos, Appl. Catal. A, 264, 161 (2004). https://doi.org/10.1016/j.apcata.2003.12.039
  15. B. Pant, M. Susan, and S. Williams, Catal. Commun., 5, 305 (2004). https://doi.org/10.1016/j.catcom.2004.03.009
  16. Z. Zsoldos, T. Hoffer, and L. Cucz, J. Phys. Chem., 95, 798 (1991). https://doi.org/10.1021/j100155a058
  17. R. L. Chln and D. M. Hercule, J. Phys. Chem., 86, 360 (1982). https://doi.org/10.1021/j100392a016
  18. S. Assabumrungrat, N. Laosiripojana, and P. Piroonlerkgul, J. Powe. Sourc., 159, 1274 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.010