Production of Lard Based Biodiesel Using Ultrasound Assisted Trans-Esterification

초음파가 도입된 전이에스테르화 반응을 이용한 돈지원료 바이오디젤의 제조

  • Cho, Hae-Jin (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Seung-Bum (Division of Energy & Biological Engineering, Kyungwon University) ;
  • Lee, Jae-Dong (Division of Energy & Biological Engineering, Kyungwon University)
  • 조혜진 (경원대학교 환경에너지공학전공) ;
  • 이승범 (경원대학교 환경에너지공학전공) ;
  • 이재동 (경원대학교 환경에너지공학전공)
  • Received : 2010.11.15
  • Accepted : 2010.12.23
  • Published : 2011.04.10

Abstract

An animal fat is an attractive biodiesel energy source for its high stability against oxidation and low incomplete combustion ratio due to the high heating value and cetane value. However, it requires a refinery process because of the high content of saturated acid and impurity which increas the boiling point. In this study, the optimum biodiesel synthetic process of lard is suggested. Indeed, we demonstrate new biodiesel production processes to alter conventional process of heating and mixing by applying ultrasonic energy. While the optimum reaction temperature and mole ratio of methanol and lard, when using conventional mixing and heating process, were $55^{\circ}C$ and 12, respectively, the reaction time were reduced to 30 minutes by applying ultrasonic irradiation power of 500 W. The new process applying ultrasonic irradiation yielded synthetic biodiesel properties as followings: 3.34 cP of the viscosity, 37.0 MJ/kg of the caloric value and below 0.25 mgKOH/g of the acidic value, which satisfy biodiesel quality criteria.

Keywords

ultrasonic energy;trans-esterification;biodiesel;lard;fatty acid methyl ester content

Acknowledgement

Supported by : 경원대학교

References

  1. S.-J. Park and E.-Y. Kim, Korean J. Biotechnol. Bioeng, 17, 396 (2002).
  2. C.-K. Kim and H.-G. Kim, The Korean Society of Tribologists & Lubrication Engineers, 24, 1 (2008).
  3. C. T. Hou and J. F. Shaw, Biocatalysis and Bioenergy, John Wiley & Sons, Inc, 59 (2009).
  4. S. Lebedevas and A. Waicekauskas, Energy Fuels, 20, 2274 (2006). https://doi.org/10.1021/ef060145c
  5. M. E, Cunha, L. C. Krause, M. S. A. Moraes, C. S. Faccini, R. A. Jacques, S. R. Almeida, M. R. A. Rodrigues, and E. B. Caramao, Fuel Process. Technol., 90, 570 (2009). https://doi.org/10.1016/j.fuproc.2009.01.001
  6. M. Guru, B. D. Artukoglu, A. Keskin, and A. Koca, Energy Convers. Manage., 50, 498 (2009). https://doi.org/10.1016/j.enconman.2008.11.001
  7. G. M. Tashtoush, M. I. Al-Widyan, and M. M. Al-Jarrah, Energy Convers. Manage., 45, 2697 (2004). https://doi.org/10.1016/j.enconman.2003.12.009
  8. P. R. Munjyappa, S. C. Brammer, and H. Noureddini, Bioresour. Technol., 56, 19 (1996). https://doi.org/10.1016/0960-8524(95)00178-6
  9. G.-T. Jeong, H.-S. Yang, and D.-H. Park, Bioresource Technology, 100, 25 (2009). https://doi.org/10.1016/j.biortech.2008.05.011
  10. H.-J. Kim, W.-I. Kim, S.-B. Lee, and I.-K. Hong, J. Korean Ind. Eng. Chem, 8, 886 (1997).
  11. S.-B. Lee, S.-M. Lee, and I.-K. Hong, J. Korean Ind. Eng. Chem, 14, 989 (2003).
  12. T. J. Mason and J. P. Lorimer, Sonochemistry, John Wily & Sons, New York (1988).
  13. T. J. Mason, Chemistry with Ultrasound, Elsevier Science, New York (1990).
  14. G.-T. Jung and D.-H. Yoon, KSSB, Proceedings of Current Biotechnology and Bioengineering (XII), 167 (2003).
  15. S.-B. Lee, K.-H. Han, J.-D. Lee, and I.-K. Hong, J. Ind. Eng. Chem., 16, 1006 (2010).